Skip to main content

Effective Encodings of Constraint Programming Models to SMT

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

Abstract

Satisfiability Modulo Theories (SMT) is a well-established methodology that generalises propositional satisfiability (SAT) by adding support for a variety of theories such as integer arithmetic and bit-vector operations. SMT solvers have made rapid progress in recent years. In part, the efficiency of modern SMT solvers derives from the use of specialised decision procedures for each theory. In this paper we explore how the Essence Prime constraint modelling language can be translated to the standard SMT-LIB language. We target four theories: bit-vectors (QF_BV), linear integer arithmetic (QF_LIA), non-linear integer arithmetic (QF_NIA), and integer difference logic (QF_IDL). The encodings are implemented in the constraint modelling tool Savile Row. In an extensive set of experiments, we compare our encodings for the four theories, showing some notable differences and complementary strengths. We also compare our new encodings to the existing work targeting SMT and SAT, and to a well-established learning CP solver. Our two proposed encodings targeting the theory of bit-vectors (QF_BV) both substantially outperform earlier work on encoding to QF_BV on a large and diverse set of problem classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Experiment scripts, model and parameter files and raw results can be found at: https://github.com/stacs-cp/CP2020-SRSMT  [10].

References

  1. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Exploiting short supports for improved encoding of arbitrary constraints into SAT. In: Principles and Practice of Constraint Programming - 22nd International Conference, CP, Toulouse, France, pp. 3–12 (2016)

    Google Scholar 

  2. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY-CP and the MiniZinc challenge. Theory Pract. Log. Programm. 18(1), 81–96 (2018). https://doi.org/10.1017/S1471068417000205

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacchus, F.: GAC via unit propagation. In: Principles and Practice of Constraint Programming, 13th International Conference, CP Providence, RI, USA, pp. 133–147 (2007)

    Google Scholar 

  4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical report, Department of Computer Science, The University of Iowa (2017). www.SMT-LIB.org

  5. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.: Improved linearization of constraint programming models. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 49–65. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_4

    Chapter  Google Scholar 

  6. Bofill, M., Palahı, M., Suy, J., Villaret, M.: SIMPLY: a compiler from a CSP modeling language to the SMT-LIB format. In: Proceedings of the 8th International Workshop on Constraint Modelling and Reformulation, pp. 30–44 (2009)

    Google Scholar 

  7. Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo theories. Constraints 17(3), 273–303 (2012). https://doi.org/10.1007/s10601-012-9123-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving intensional weighted CSPs by incremental optimization with BDDs. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 207–223. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_17

    Chapter  MATH  Google Scholar 

  9. Contaldo, F., Trentin, P., Sebastiani, R.: From minizinc to optimization modulo theories, and back (extended version). CoRR abs/1912.01476 (2019). http://arxiv.org/abs/1912.01476

  10. Davidson, E., Akgün, Ö., Espasa, J., Nightingale, P.: Experiments for CP2020 SR-SMT paper (2020). https://doi.org/10.5281/zenodo.3953600

  11. Dutertre, B.: Yices 2.2. In: Computer Aided Verification - 26th International Conference, CAV Vienna, Austria, pp. 737–744 (2014)

    Google Scholar 

  12. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Computer Aided Verification, 18th International Conference, CAV Seattle, WA, USA, pp. 81–94 (2006)

    Google Scholar 

  13. Hadarean, L., Bansal, K., Jovanovic, D., Barrett, C.W., Tinelli, C.: A tale of two solvers: eager and lazy approaches to bit-vectors. In: Computer Aided Verification - 26th International Conference, CAV Vienna, Austria, pp. 680–695 (2014)

    Google Scholar 

  14. Huang, J.: Universal booleanization of constraint models. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_10

    Chapter  Google Scholar 

  15. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-50497-0

  16. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS, Budapest, Hungary, pp. 337–340 (2008)

    Google Scholar 

  17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessiere, C. (ed.) Principles and Practice of Constraint Programming - CP 2007, 13th International Conference, Providence, RI, USA, vol. 4741, pp. 529–543 (2007). https://doi.org/10.1007/978-3-540-74970-7_38

  18. Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification of timed automata via satisfiability checking. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th International Symposium, FTRTFT Oldenburg, Germany, pp. 225–244 (2002)

    Google Scholar 

  19. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolector 3.0. In: Computer Aided Verification - 30th International Conference, CAV Oxford, UK, pp. 587–595 (2018)

    Google Scholar 

  20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859

    Article  MathSciNet  MATH  Google Scholar 

  21. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.: Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35–61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Nightingale, P., Rendl, A.: Essence’ description. Computing Research Repository (CoRR) abs/1601.02865 (2016), http://arxiv.org/abs/1601.02865

  23. Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding of constraint problems through common subexpression elimination in Savile row. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330–340. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_23

    Chapter  Google Scholar 

  24. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. In: Computer Aided Verification - 27th International Conference, CAV, San Francisco, CA, USA, pp. 447–454 (2015)

    Google Scholar 

  25. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press (1999)

    Google Scholar 

Download references

Acknowledgements

We thank Marc Roig Vilamala who worked on an early version of the SMT backend of Savile Row. This work is supported by EPSRC grant EP/P015638/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Espasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davidson, E., Akgün, Ö., Espasa, J., Nightingale, P. (2020). Effective Encodings of Constraint Programming Models to SMT. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics