Skip to main content

Using Mask R-CNN for Image-Based Wear Classification of Solid Carbide Milling and Drilling Tools

  • Conference paper
  • First Online:
Artificial Neural Networks in Pattern Recognition (ANNPR 2020)

Abstract

In order to ensure high productivity and quality in industrial production, early identification of tool wear is needed. Within the context of Industry 4.0, we integrate wear monitoring of solid carbide milling and drilling cutters automatically into the production process. Therefore, we propose to analyze wear types with image instance segmentation using Mask R-CNN with feature pyramid and bounding box regression. Our approach is able to recognize the five most important wear types: flank wear, crater wear, fracture, built-up edge and plastic deformation. While other methods use image classification and classify only one wear type for each image, our model is able to detect multiple wear types. Over 35 models with different hyperparameter settings were trained on 5,000 labeled images to establish a reliable classifier. The results show up to 82.03% accuracy and benefit for overlapping wear types, which is crucial for using the model in production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG, URL: https://www.mapal.com/.

References

  1. Abdulla, W.: Mask R-CNN for Object Detection and Segmentation (2017). https://github.com/matterport/Mask_RCNN

  2. Cuš, F., Župerl, U.: Real-time cutting tool condition monitoring in milling. Strojniski Vestnik 57, 142–150 (2011). https://doi.org/10.5545/sv-jme.2010.079

    Article  Google Scholar 

  3. D’Addona, D.M., Teti, R.: Image data processing via neural networks for tool wear prediction. Procedia CIRP 12, 252–257 (2013). https://doi.org/10.1016/j.procir.2013.09.044

    Article  Google Scholar 

  4. Dutta, A., et al.: VGG Image Annotator (VIA) (2019). http://www.robots.ox.ac.uk/~vgg/software/via/

  5. Erdik, T., şen, Z.: Prediction of tool wear using regression and ANN models in end-milling operation a critical review. Int. J. Adv. Manuf. Tech. 37, 765–766 (2008). https://doi.org/10.1007/s00170-008-1758-0

  6. e.V., D.: DIN 4000–82. Beuth Verlag GmbH (2011)

    Google Scholar 

  7. e.V., D.: DIN 4000–81. Beuth Verlag GmbH (2012)

    Google Scholar 

  8. Fernández-Robles, L., et al.: Machine-vision-based identification of broken inserts in edge profile milling heads. RCIM 44, 276–283 (2017). https://doi.org/10.1016/j.rcim.2016.10.004

  9. García-Ordás, M.T., et al.: Tool wear monitoring using an online, automatic and low cost system based on local texture. MSSP 112, 98–112 (2018). https://doi.org/10.1016/j.ymssp.2018.04.035

  10. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE ICCV, pp. 1440–1448 (2015). arXiv: 1504.08083

  11. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, pp. 580–587 (2013). arXiv: 1311.2524

  12. He, K., et al.: Mask R-CNN. CoRR, pp. 2980–2988 (2017). arXiv: 1703.06870

  13. IDS Imaging Development Systems GmbH: iDS UI-1460SE (2020). https://de.ids-imaging.com/store/ui-1460se.html

  14. International Organization for Standardization: ISO 8688–1. ISO, 1st edn. (1989)

    Google Scholar 

  15. International Organization for Standardization: ISO 8688–2. ISO, 1st edn. (1989)

    Google Scholar 

  16. Kong, D., et al.: Gaussian process regr. for tool wear pred. MSSP 104, 556–574 (2018). https://doi.org/10.1016/j.ymssp.2017.11.021

  17. Lin, T.Y., et al.: Microsoft COCO. In: ECCV, pp. 740–755 (2014). arXiv: 1405.0312

  18. M-Service & Geräte Peter Müller e.K.: Bedienungsanleitung Modell CV-KLQ-LED-9 (2016). https://www.m-service.de/seiten/d/downloads_d_only/d_Bedienungsanleitung_CV-KLQ-LED.pdf

  19. MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG: Kompetenz Vollbohren mit Vollhartmetall, PKD und Wechselkopf-Systemen (2020). https://www.mapal.com/de/produkte/vollbohren-aufbohren-senken/vollbohren/

  20. Mikołajczyk, T., et al.: Neural network approach for automatic image analysis of cutting edge wear. MSSP 88, 100–110 (2017). https://doi.org/10.1016/j.ymssp.2016.11.026

    Article  Google Scholar 

  21. Pfeifer, T., Wiegers, L.: Reliable tool wear monitoring by optimized image and illumination control in machine vision. Measurement 28(3), 209–218 (2000). https://doi.org/10.1016/S0263-2241(00)00014-2

    Article  Google Scholar 

  22. Shi, X., Wang, X., Jiao, L., Wang, Z., Yan, P., Gao, S.: A real-time tool failure monitoring system based on cutting force analysis. Int. J. Adv. Manuf. Technol., 2567–2583 (2017). https://doi.org/10.1007/s00170-017-1244-7

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015). arXiv: 1409.1556

  24. Sukeri, M., et al.: Wear detection of drill bit by image-based technique. IOP Conf. Ser. Mat. Sci. Eng. 328 (2018). https://doi.org/10.1088/1757-899X/328/1/012011

  25. Thakre, A.A., et al.: Measurements of tool wear parameters using machine vision system. Model. Simul. Eng. 2019, 1–9 (2019). https://doi.org/10.1155/2019/1876489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Dalferth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalferth, J., Winkelmann, S., Schwenker, F. (2020). Using Mask R-CNN for Image-Based Wear Classification of Solid Carbide Milling and Drilling Tools. In: Schilling, FP., Stadelmann, T. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2020. Lecture Notes in Computer Science(), vol 12294. Springer, Cham. https://doi.org/10.1007/978-3-030-58309-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58309-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58308-8

  • Online ISBN: 978-3-030-58309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics