Abstract
Metatranscriptome sequence data analysis is necessary for understanding biochemical changes in the microbial community and their effects. In this paper, we propose a methodology to estimate activities of individual metabolic pathways to better understand the activity of the entire metabolic network. Our novel pipeline includes an expectation-maximization based estimation of enzyme expression and simultaneous estimation of pathway activity level and enzyme participation level in each pathway. We applied our novel pipeline to metatranscriptome data generated from surface water planktonic communities sampled over a day-night cycle in the Northern Gulf of Mexico (Louisiana Shelf). Our results show the estimated enzyme expression, pathway activity levels as well as enzyme participation levels in each pathway are robust and stable across all data points. In contrast to expression of enzymes, the estimated activity levels of significant number of metabolic pathways strongly correlate with the environmental parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527 (2016)
de Carvalho, C.C.C.R., Caramujo, M.: The various roles of fatty acids. Molecules 23(10), 2583 (2018)
Donato, M., et al.: Analysis and correction of crosstalk effects in pathway analysis. Genome Res. 23(11), 1885–1893 (2013)
Efron, B., Tibshirani, R.: On testing the significance of sets of genes. Ann. Appl. Stat. 1(1), 107–129 (2007)
Heinzelmann, S.M., et al.: Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms. FEMS Microbiol. Lett. 362(10), fnv065 (2015)
Huson, D.H., Mitra, S., Ruscheweyh, H.-J., Weber, N., Schuster, S.C.: Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21(9), 1552–1560 (2011)
Kanehisa, M.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)
Kaye, J.Z.: Halomonas neptunia sp. nov., halomonas sulfidaeris sp. nov., halomonas axialensis sp. nov. and halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int. J. Syst. Evol. Microbiol. 54, 499–511 (2004)
Konwar, K.M., Hanson, N.W., Pagé, A.P., Hallam, S.J.: MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information. BMC Bioinform. 14, 202 (2013)
Mandric, I., Knyazev, S., Padilla, C., Stewart, F., Măndoiu, I.I., Zelikovsky, A.: Metabolic analysis of metatranscriptomic data from planktonic communities. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 396–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_41
Mandric, I., Temate-Tiagueu, Y., Shcheglova, T., Al Seesi, S., Zelikovsky, A., Mandoiu, I.I.: Fast bootstrapping-based estimation of confidence intervals of expression levels and differential expression from RNA-Seq data. Bioinformatics 33(20), 3302–3304 (2017)
Mitrea, C., et al.: Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 4, 278 (2013)
Sharon, I., Bercovici, S., Pinter, R.Y., Shlomi, T.: Pathway-based functional analysis of metagenomes. J. Comput. Biol. 18(3), 495–505 (2011)
Shen, M., Li, Q., Ren, M., Lin, Y., Wang, J., Chen, L., Li, T., Zhao, J.: Trophic status is associated with community structure and metabolic potential of planktonic microbiota in plateau lakes. Front. Microbiol. 10, 2560 (2019)
Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15545–15550 (2005)
Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)
Ye, Y., Doak, T.G.: A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 5(8), e1000465 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rondel, F. et al. (2020). Estimating Enzyme Participation in Metabolic Pathways for Microbial Communities from RNA-seq Data. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-57821-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57820-6
Online ISBN: 978-3-030-57821-3
eBook Packages: Computer ScienceComputer Science (R0)