Skip to main content

In Vitro Clot Modeling and Clinical Applications

  • Chapter
  • First Online:
12 Strokes

Abstract

Stroke is a leading cause of death and disability in the USA and poses a significant economic burden to society. According to the heart disease and stroke statistics from 2018, an additional 4% of the adult population will have experienced a stroke by 2030. Recent randomized controlled trials have demonstrated a convincing benefit from stent retriever-mediated mechanical thrombectomy for selected acute ischemic stroke (AIS) patients with large vessel occlusion in the anterior circulation. Early reperfusion of ischemic penumbra is associated with favorable outcomes and reduced mortality. The dependencies of the efficacy and safety of endovascular treatment on clot composition and mechanics were highlighted in prior studies. Understanding the clot composition prior to thrombectomy using imaging modalities such as MR or CT may help determine the most appropriate treatment strategy. Current in vitro clot modeling techniques produce clinically representative clot analogs with different mechanical features for device efficacy testing and with various histological patterns for improving clot imaging quality. In this chapter, we will review several methods of clot preparation and characterization and discuss the clinical applications of the clot analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the american heart association. Circulation. 2018;137:e67–e492.

    Article  Google Scholar 

  2. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-pa vs. T-pa alone in stroke. N Engl J Med. 2015;372:2285–95.

    Article  CAS  PubMed  Google Scholar 

  3. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    Article  CAS  PubMed  Google Scholar 

  4. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

    Article  CAS  PubMed  Google Scholar 

  5. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20.

    Article  PubMed  CAS  Google Scholar 

  6. Chueh JY, Kuhn AL, Puri AS, Wilson SD, Wakhloo AK, Gounis MJ. Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study. Stroke. 2013;44:1396–401.

    Article  PubMed  Google Scholar 

  7. Gunning GM, McArdle K, Mirza M, Duffy S, Gilvarry M, Brouwer PA. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J NeuroInterv Surg. 2017;10:34.

    Article  PubMed  Google Scholar 

  8. Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J. 1999;77:2813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gralla J, Schroth G, Remonda L, Fleischmann A, Fandino J, Slotboom J, et al. A dedicated animal model for mechanical thrombectomy in acute stroke. Am J Neuroradiol. 2006;27:1357–61.

    CAS  PubMed  Google Scholar 

  10. Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. Am J Neuroradiol. 2011;32:1237–44.

    Article  CAS  PubMed  Google Scholar 

  11. Asakura F, Yilmaz H, Abdo G, Sekoranja L, San Millan D, Augsburger L, et al. Preclinical testing of a new clot-retrieving wire device using polyvinyl alcohol hydrogel vascular models. Neuroradiology. 2007;49:243–51.

    Article  PubMed  Google Scholar 

  12. Shah JV, Janmey PA. Strain hardening of fibrin gels and plasma clots. Rheol Acta. 1997;36:262–8.

    Article  CAS  Google Scholar 

  13. Fitzgerald S, Dai D, Wang S, Douglas A, Kadirvel R, Layton KF, et al. Platelet-rich emboli in cerebral large vessel occlusion are associated with a large artery atherosclerosis source. Stroke. 2019;50:1907–10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Siller-Matula JM, Plasenzotti R, Spiel AO, Quehenberger P, A Jilma B. Interspecies differences in coagulation profile. J Thromb Haemostas. 2008;100:397–404.

    Article  CAS  Google Scholar 

  15. Duffy S, Farrell M, McArdle K, Thornton J, Vale D, Rainsford E, et al. Novel methodology to replicate clot analogs with diverse composition in acute ischemic stroke. J NeuroInterv Surg. 2017;9:486.

    Article  PubMed  Google Scholar 

  16. Slaboch CL, Alber MS, Rosen ED, Ovaert TC. Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling. J Mech Behav Biomed Mater. 2012;10:75–86.

    Article  PubMed  Google Scholar 

  17. Krueger K, Deissler P, Coburger S, Fries JWU, Lackner K. How thrombus model impacts the in vitro study of interventional thrombectomy procedures. Investig Radiol. 2004;39:641–8.

    Article  Google Scholar 

  18. Shao Q, Zhu L, Li T, Li L, Li D, Zhang J, et al. New method of thrombus preparation using a fluid model for evaluation of thrombectomy devices in a swine model. Thromb Res. 2014;134:1087–92.

    Article  CAS  PubMed  Google Scholar 

  19. PJC F. A study of artificial thrombi produced by a modification of chandler's method. Q J Exp Physiol Cogn Med Sci. 1959;44:377–84.

    Google Scholar 

  20. Robinson RA, Herbertson LH, Das SS, Malinauskas RA, Pritchard WF, Grossman LW. Limitations of using synthetic blood clots for measuring in vitro clot capture efficiency of inferior vena cava filters. Med Dev (Auckland, NZ). 2013;6:49–57.

    CAS  Google Scholar 

  21. Merritt W, Holter AM, Beahm S, Gonzalez C, Becker TA, Tabor A, et al. Quantifying the mechanical and histological properties of thrombus analog made from human blood for the creation of synthetic thrombus for thrombectomy device testing. J NeuroInterv Surg. 2018;10:1168.

    Article  PubMed  Google Scholar 

  22. Johnson S, Duffy S, Gunning G, Gilvarry M, McGarry JP, McHugh PE. Review of mechanical testing and modelling of thrombus material for vascular implant and device design. Ann Biomed Eng. 2017;45:2494–508.

    Article  CAS  PubMed  Google Scholar 

  23. Ashton JH, Vande Geest JP, Simon BR, Haskett DG. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J Biomech. 2009;42:197–201.

    Article  PubMed  Google Scholar 

  24. Krasokha N, Theisen W, Reese S, Mordasini P, Brekenfeld C, Gralla J, et al. Mechanical properties of blood clots – a new test method. Mater Werkst. 2011;41:1019–24.

    Article  CAS  Google Scholar 

  25. Brown AEX, Litvinov RI, Discher DE, Purohit PK, Weisel JW. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science (New York, NY). 2009;325:741–4.

    Article  CAS  Google Scholar 

  26. Saldívar E, Orje JN, Ruggeri ZM. Tensile destruction test as an estimation of partial proteolysis in fibrin clots. Am J Hematol. 2002;71:119–27.

    Article  PubMed  Google Scholar 

  27. Kim OV, Litvinov RI, Weisel JW, Alber MS. Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials. 2014;35:6739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Kempen THS, Donders WP, van de Vosse FN, Peters GWM. A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomech Model Mechanobiol. 2016;15:279–91.

    Article  PubMed  Google Scholar 

  29. van Kempen THS, Peters GWM, van de Vosse FN. A constitutive model for the time-dependent, nonlinear stress response of fibrin networks. Biomech Model Mechanobiol. 2015;14:995–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Riha P, Wang X, Liao R, F Stoltz J. Elasticity and fracture strain of whole blood clots. Clin Hemorheol Microcirc. 1999;21:45.

    CAS  PubMed  Google Scholar 

  31. Weafer FM, Duffy S, Machado I, Gunning G, Mordasini P, Roche E, et al. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. J Neurointerv Surg. 2019;11:891–7.

    Article  PubMed  Google Scholar 

  32. Vidmar J, Serša I, Kralj E, Popovič P. Unsuccessful percutaneous mechanical thrombectomy in fibrin-rich high-risk pulmonary thromboembolism. Thromb J. 2015;13:30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zaidat OO, Haussen DC, Hassan AE, Jadhav AP, Mehta BP, Mokin M, et al. Impact of stent retriever size on clinical and angiographic outcomes in the stratis stroke thrombectomy registry. Stroke. 2019;50:441–7.

    Article  PubMed  Google Scholar 

  34. Yuki I, Kan I, Vinters HV, Kim RH, Golshan A, Vinuela FA, et al. The impact of thromboemboli histology on the performance of a mechanical thrombectomy device. AJNR Am J Neuroradiol. 2012;33:643–8.

    Article  CAS  PubMed  Google Scholar 

  35. Shin JW, Jeong HS, Kwon HJ, Song KS, Kim J. High red blood cell composition in clots is associated with successful recanalization during intra-arterial thrombectomy. PLoS One. 2018;13:e0197492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nouh A, Mehta T, Hussain M, Song X, Ollenschleger M. Abstract tp210: histopathological evaluation of thrombus in acute stroke and correlation with stroke etiology. Stroke. 2017;48:ATP210.

    Google Scholar 

  37. Kaesmacher J, Boeckh-Behrens T, Simon S, Maegerlein C, Kleine JF, Zimmer C, et al. Risk of thrombus fragmentation during endovascular stroke treatment. AJNR Am J Neuroradiol. 2017;38:991–8.

    Article  CAS  PubMed  Google Scholar 

  38. Boeckh-Behrens T, Schubert M, Forschler A, Prothmann S, Kreiser K, Zimmer C, et al. The impact of histological clot composition in embolic stroke. Clin Neuroradiol. 2016;26:189–97.

    Article  CAS  PubMed  Google Scholar 

  39. Marder VJ, Chute DJ, Starkman S, Abolian AM, Kidwell C, Liebeskind D, et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37:2086–93.

    Article  PubMed  Google Scholar 

  40. Nahirnyak VM, Yoon SW, Holland CK. Acousto-mechanical and thermal properties of clotted blood. J Acoust Soc Am. 2006;119:3766–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, Moya AL, et al. Ct and mri early vessel signs reflect clot composition in acute stroke. Stroke. 2011;42:1237–43.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim SK, Yoon W, Kim TS, Kim HS, Heo TW, Park MS. Histologic analysis of retrieved clots in acute ischemic stroke: correlation with stroke etiology and gradient-echo mri. Am J Neuroradiol. 2015;36:1756–62.

    Article  CAS  PubMed  Google Scholar 

  43. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82:223–32.

    Article  CAS  PubMed  Google Scholar 

  44. De Meyer SF, Stoll G, Wagner DD, Kleinschnitz C. Von willebrand factor: an emerging target in stroke therapy. Stroke. 2012;43:599–606.

    Article  PubMed  CAS  Google Scholar 

  45. Fitzgerald ST, Wang S, Dai D, Douglas A, Kadirvel R, Gounis MJ, et al. Platelet-rich clots as identified by martius scarlet blue staining are isodense on ncct. J Neurointerv Surg. 2019;11:1145–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. De Meyer SF, Andersson T, Baxter B, Bendszus M, Brouwer P, Brinjikji W, et al. Analyses of thrombi in acute ischemic stroke: a consensus statement on current knowledge and future directions. Int J Stroke. 2017;12:606–14.

    Article  PubMed  Google Scholar 

  47. Kirchhof K, Welzel T, Mecke C, Zoubaa S, Sartor K. Differentiation of white, mixed, and red thrombi: value of ct in estimation of the prognosis of thrombolysis—phantom study. Radiology. 2003;228:126–30.

    Article  PubMed  Google Scholar 

  48. Chandler A. In vitro thrombotic coagulation of the blood; a method for producing a thrombus. Lab Investig; a journal of technical methods and pathology. 1958;7:110–4.

    CAS  Google Scholar 

  49. Kan I, Yuki I, Murayama Y, Viñuela FA, Kim RH, Vinters HV, et al. A novel method of thrombus preparation for use in a swine model for evaluation of thrombectomy devices. Am J Neuroradiol. 2010;31:1741–3.

    Article  CAS  PubMed  Google Scholar 

  50. Yoh R, Matsumoto T, Sasaki J, Sohmura T. Biomimetic fabrication of fibrin/apatite composite material. J Biomed Mater Res A. 2008;87:222–8.

    Article  PubMed  CAS  Google Scholar 

  51. Haider T, Plasenzotti R, Bergmeister H, Mach G, Kleinpeter G, Aguilar-Perez M, et al. New mechanical thrombectomy model in the rabbit: a feasibility study. J Neurosci Methods. 2016;271:139–42.

    Article  CAS  PubMed  Google Scholar 

  52. van der Bom IM, Mehra M, Walvick RP, Chueh JY, Gounis MJ. Quantitative evaluation of c-arm ct cerebral blood volume in a canine model of ischemic stroke. AJNR Am J Neuroradiol. 2012;33:353–8.

    Article  PubMed  Google Scholar 

  53. Mehra M, Henninger N, Hirsch JA, Chueh J, Wakhloo AK, Gounis MJ. Preclinical acute ischemic stroke modeling. J Neurointerv Surg. 2012;4:307–13.

    Article  PubMed  Google Scholar 

  54. Gralla J, Schroth G, Remonda L, Fleischmann A, Fandino J, Slotboom J, et al. A dedicated animal model for mechanical thrombectomy in acute stroke. AJNR Am J Neuroradiol. 2006;27:1357–61.

    CAS  PubMed  Google Scholar 

  55. Marosfoi MG, Korin N, Gounis MJ, Uzun O, Vedantham S, Langan ET, et al. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion. Stroke. 2015;46:3507–13.

    Article  CAS  PubMed  Google Scholar 

  56. Nurden AT. Thrombus stability on the vessel wall. Blood. 2008;112:4–5.

    Article  CAS  PubMed  Google Scholar 

  57. Randriamboavonjy V, Isaak J, Fromel T, Viollet B, Fisslthaler B, Preissner KT, et al. Ampk alpha2 subunit is involved in platelet signaling, clot retraction, and thrombus stability. Blood. 2010;116:2134–40.

    Article  CAS  PubMed  Google Scholar 

  58. Lishko VK, Burke T, Ugarova T. Antiadhesive effect of fibrinogen: a safeguard for thrombus stability. Blood. 2007;109:1541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Calaminus SD, Auger JM, McCarty OJ, Wakelam MJ, Machesky LM, Watson SP. Myosiniia contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. J Thromb Haemost. 2007;5:2136–45.

    Article  CAS  PubMed  Google Scholar 

  60. Andre P, Delaney SM, LaRocca T, Vincent D, DeGuzman F, Jurek M, et al. P2y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest. 2003;112:398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baumgartner HR, Sakariassen KS. Factors controlling thrombus formation on arterial lesions. Ann N Y Acad Sci. 1985;454:162–77.

    Article  CAS  PubMed  Google Scholar 

  62. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res. 2004;114:447–53.

    Article  CAS  PubMed  Google Scholar 

  63. Andrews RK, Berndt MC. Platelet adhesion: a game of catch and release. J Clin Invest. 2008;118:3009–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Blann AD, Lip GY. Virchow's triad revisited: the importance of soluble coagulation factors, the endothelium, and platelets. Thromb Res. 2001;101:321–7.

    Article  CAS  PubMed  Google Scholar 

  65. Ruggeri ZM. Von willebrand factor. J Clin Invest. 1997;100:S41–6.

    CAS  PubMed  Google Scholar 

  66. Reininger AJ. Vwf attributes--impact on thrombus formation. Thromb Res. 2008;122(Suppl 4):S9–13.

    Article  CAS  PubMed  Google Scholar 

  67. Roquer J, Segura T, Serena J, Castillo J. Endothelial dysfunction, vascular disease and stroke: the artico study. Cerebrovasc Dis. 2009;27(Suppl 1):25–37.

    Article  CAS  PubMed  Google Scholar 

  68. Chen J, Lopez JA. Interactions of platelets with subendothelium and endothelium. Microcirculation. 2005;12:235–46.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang ZG, Zhang L, Tsang W, Goussev A, Powers C, Ho KL, et al. Dynamic platelet accumulation at the site of the occluded middle cerebral artery and in downstream microvessels is associated with loss of microvascular integrity after embolic middle cerebral artery occlusion. Brain Res. 2001;912:181–94.

    Article  CAS  PubMed  Google Scholar 

  70. Christ KV, Turner KT. Methods to measure the strength of cell adhesion to substrates. J Adhes Sci Technol. 2010;24:2027–58.

    Article  CAS  Google Scholar 

  71. Garcia AJ, Huber F, Boettiger D. Force required to break alpha5beta1 integrin-fibronectin bonds in intact adherent cells is sensitive to integrin activation state. J Biol Chem. 1998;273:10988–93.

    Article  CAS  PubMed  Google Scholar 

  72. Gallant ND, Michael KE, Garcia AJ. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell. 2005;16:4329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gutierrez E, Groisman A. Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device. Anal Chem. 2007;79:2249–58.

    Article  CAS  PubMed  Google Scholar 

  74. Thoumine O, Ott A. Comparison of the mechanical properties of normal and transformed fibroblasts. Biorheology. 1997;34:309–26.

    Article  CAS  PubMed  Google Scholar 

  75. Missirlis YF, Spiliotis AD. Assessment of techniques used in calculating cell–material interactions. Biomol Eng. 2002;19:287–94.

    Article  CAS  PubMed  Google Scholar 

  76. Thoumine O, Ott A, Louvard D. Critical centrifugal forces induce adhesion rupture or structural reorganization in cultured cells. Cell Motil Cytoskeleton. 1996;33:276–87.

    Article  CAS  PubMed  Google Scholar 

  77. Channavajjala LS, Eidsath A, Saxinger WC. A simple method for measurement of cell-substrate attachment forces: application to hiv-1 tat. J Cell Sci. 1997;110(Pt 2):249–56.

    CAS  PubMed  Google Scholar 

  78. Chueh J, Kuhn AL, Mehra M, Feula G, Wakhloo AK, Gounis MJ. Abstract 3750: embolus adhesion to activated endothelium after embolization: a parameter to predict outcomes of mechanical thrombectomy in acute ischemic stroke. Stroke. 2012;43:A3750.

    Google Scholar 

  79. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21.

    Article  PubMed  Google Scholar 

  80. Spiotta AM, Chaudry MI, Hui FK, Turner RD, Kellogg RT, Turk AS. Evolution of thrombectomy approaches and devices for acute stroke: a technical review. J Neurointerv Surg. 2015;7:2–7.

    Article  PubMed  Google Scholar 

  81. Flint AC, Cullen SP, Faigeles BS, Rao VA. Predicting long-term outcome after endovascular stroke treatment: the totaled health risks in vascular events score. AJNR Am J Neuroradiol. 2010;31:1192–6.

    Article  PubMed  Google Scholar 

  82. Kulcsar Z, Bonvin C, Pereira VM, Altrichter S, Yilmaz H, Lovblad KO, et al. Penumbra system: a novel mechanical thrombectomy device for large-vessel occlusions in acute stroke. AJNR Am J Neuroradiol. 2010;31:628–33.

    Article  CAS  PubMed  Google Scholar 

  83. Menon BK, Hill MD, Eesa M, Modi J, Bhatia R, Wong J, et al. Initial experience with the penumbra stroke system for recanalization of large vessel occlusions in acute ischemic stroke. Neuroradiology. 2011;53:261–6.

    Article  PubMed  Google Scholar 

  84. Chueh JY, Puri AS, Gounis MJ. An in vitro evaluation of distal emboli following lazarus cover-assisted stent retriever thrombectomy. J Neurointerv Surg. 2017;9:183–7.

    Article  PubMed  Google Scholar 

  85. Nguyen TN, Malisch T, Castonguay AC, Gupta R, Sun CH, Martin CO, et al. Balloon guide catheter improves revascularization and clinical outcomes with the solitaire device: analysis of the north american solitaire acute stroke registry. Stroke. 2013;45:141–5.

    Article  PubMed  Google Scholar 

  86. Nguyen TN, Castonguay AC, Nogueira RG, Haussen DC, English JD, Satti SR, et al. Effect of balloon guide catheter on clinical outcomes and reperfusion in trevo thrombectomy. J Neurointerv Surg. 2019;11:861–5.

    Article  PubMed  Google Scholar 

  87. Zaidat OO, Mueller-Kronast NH, Hassan AE, Haussen DC, Jadhav AP, Froehler MT, et al. Impact of balloon guide catheter use on clinical and angiographic outcomes in the stratis stroke thrombectomy registry. Stroke. 2019;50:697–704.

    Article  PubMed  Google Scholar 

  88. Menon BK, Sajobi TT, Zhang Y, Rempel JL, Shuaib A, Thornton J, et al. Analysis of workflow and time to treatment on thrombectomy outcome in the endovascular treatment for small core and proximal occlusion ischemic stroke (escape) randomized, controlled trial. Circulation. 2016;133:2279–86.

    Article  CAS  PubMed  Google Scholar 

  89. Velasco A, Buerke B, Stracke CP, Berkemeyer S, Mosimann PJ, Schwindt W, et al. Comparison of a balloon guide catheter and a non-balloon guide catheter for mechanical thrombectomy. Radiology. 2016;280:169–76.

    Article  PubMed  Google Scholar 

  90. Saedon M, Dilshad A, Tiivas C, Virdee D, Hutchinson CE, Singer DR, et al. Prospective validation study of transorbital doppler ultrasound imaging for the detection of transient cerebral microemboli. Br J Surg. 2014;101:1551–5.

    Article  CAS  PubMed  Google Scholar 

  91. Sarkar S, Ghosh S, Ghosh SK, Collier A. Role of transcranial doppler ultrasonography in stroke. Postgrad Med J. 2007;83:683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Silbert BS, Evered LA, Scott DA, Rahardja S, Gerraty RP, Choong PF. Review of transcranial doppler ultrasound to detect microemboli during orthopedic surgery. AJNR Am J Neuroradiol. 2014;35:1858–63.

    Article  CAS  PubMed  Google Scholar 

  93. Vukovic-Cvetkovic V. Microembolus detection by transcranial doppler sonography: review of the literature. Stroke Res Treat. 2012;2012:382361.

    PubMed  Google Scholar 

  94. Zolls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci. 2012;101:914–35.

    Article  PubMed  CAS  Google Scholar 

  95. Zolls S, Weinbuch D, Wiggenhorn M, Winter G, Friess W, Jiskoot W, et al. Flow imaging microscopy for protein particle analysis--a comparative evaluation of four different analytical instruments. AAPS J. 2013;15:1200–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Reynolds LO, Mohammad SF, Solen KA, Pantalos GM, Burns GL, Olsen DB. Light scattering detection of microemboli in an extracorporeal lvad bovine model. ASAIO Trans. 1990;36:M518–21.

    CAS  PubMed  Google Scholar 

  97. Reynolds LO, Simon TL. Size distribution measurements of microaggregates in stored blood. Transfusion. 1980;20:669–78.

    Article  CAS  PubMed  Google Scholar 

  98. Reynolds LO, Solen KA, Mohammad SF, Pantalos GM, Kim J. Differential light scattering cuvettes for the measurement of thromboemboli in high shear blood flow systems. ASAIO Trans. 1990;36:M185–8.

    CAS  PubMed  Google Scholar 

  99. Konstantopoulos K, Grotta JC, Sills C, Wu KK, Hellums JD. Shear-induced platelet aggregation in normal subjects and stroke patients. Thromb Haemost. 1995;74:1329–34.

    Article  CAS  PubMed  Google Scholar 

  100. Solen KA, Mohammad SF, Pijl AJ, Swier P, Monson RD, Olsen DB. Detection of microemboli by constant-pressure filtration during in vitro circulation of bovine and human blood. Artif Organs. 1990;14:466–70.

    Article  CAS  PubMed  Google Scholar 

  101. Swank RL, Roth JG, Jansen J. Screen filtration pressure method and adhesiveness and aggregation of blood cells. J Appl Physiol. 1964;19:340–6.

    Article  CAS  PubMed  Google Scholar 

  102. Zaidat OO, Castonguay AC, Linfante I, Gupta R, Martin CO, Holloway WE, et al. First pass effect: a new measure for stroke thrombectomy devices. Stroke. 2018;49:660–6.

    Article  PubMed  Google Scholar 

  103. Mordasini P, Frabetti N, Gralla J, Schroth G, Fischer U, Arnold M, et al. In vivo evaluation of the first dedicated combined flow-restoration and mechanical thrombectomy device in a swine model of acute vessel occlusion. AJNR Am J Neuroradiol. 2011;32:294–300.

    Article  CAS  PubMed  Google Scholar 

  104. Broussalis E, Trinka E, Hitzl W, Wallner A, Chroust V, Killer-Oberpfalzer M. Comparison of stent-retriever devices versus the merci retriever for endovascular treatment of acute stroke. AJNR Am J Neuroradiol. 2013;34:366–72.

    Article  CAS  PubMed  Google Scholar 

  105. Mendonca N, Flores A, Pagola J, Rubiera M, Rodriguez-Luna D, De Miquel MA, et al. Trevo versus solitaire a head-to-head comparison between two heavy weights of clot retrieval. J Neuroimaging. 2014;24:167–70.

    Article  PubMed  Google Scholar 

  106. Park H, Hwang GJ, Jin SC, Jung CK, Bang JS, Han MK, et al. A retrieval thrombectomy technique with the solitaire stent in a large cerebral artery occlusion. Acta Neurochir. 2011;153:1625–31.

    Article  PubMed  Google Scholar 

  107. Soize S, Kadziolka K, Estrade L, Serre I, Bakchine S, Pierot L. Mechanical thrombectomy in acute stroke: prospective pilot trial of the solitaire fr device while under conscious sedation. AJNR Am J Neuroradiol. 2013;34:360–5.

    Article  CAS  PubMed  Google Scholar 

  108. van der Marel K, Chueh JY, Brooks OW, King RM, Marosfoi MG, Langan ET, et al. Quantitative assessment of device-clot interaction for stent retriever thrombectomy. J Neurointerv Surg. 2016;8:1278.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Okawa M, Tateshima S, Liebeskind D, Rao N, Jahan R, Gonzalez N, et al. Early loss of immediate reperfusion while stent retriever in place predicts successful final reperfusion in acute ischemic stroke patients. Stroke. 2015;46:3266–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337:738–42.

    Article  CAS  PubMed  Google Scholar 

  111. Saqqur M. Site of arterial occlusion identified by transcranial doppler predicts the response to intravenous thrombolysis for stroke. Stroke (1970). 2007;38:948.

    Article  Google Scholar 

  112. De Silva DA. The benefits of intravenous thrombolysis relate to the site of baseline arterial occlusion in the echoplanar imaging thrombolytic evaluation trial (epithet). Stroke (1970). 2010;41:295.

    Article  Google Scholar 

  113. Paciaroni M. Systemic thrombolysis in patients with acute ischemic stroke and internal carotid artery occlusion: the icaro study. Stroke. 2012;43:125.

    Article  PubMed  Google Scholar 

  114. Shi Z-S, Loh Y, Walker G, Duckwiler GR. Endovascular thrombectomy for acute ischemic stroke in failed intravenous tissue plasminogen activator versus non–intravenous tissue plasminogen activator patients. Revascularization and outcomes stratified by the site of arterial occlusions. Stroke. 2010;41:1185–92.

    Article  PubMed  Google Scholar 

  115. Mistry EA, Mistry AM, Nakawah MO, Chitale RV, James RF, Volpi JJ, et al. Mechanical thrombectomy outcomes with and without intravenous thrombolysis in stroke patients. A meta-analysis. Stroke. 2017;48:2450–6.

    Article  PubMed  Google Scholar 

  116. Fischer U, Kaesmacher J, Molina CA, Selim MH, Alexandrov AV, Tsivgoulis G. Primary thrombectomy in tpa (tissue-type plasminogen activator) eligible stroke patients with proximal intracranial occlusions. Stroke. 2018;49:265–9.

    Article  PubMed  Google Scholar 

  117. Kaesmacher J, Mordasini P, Arnold M, López-Cancio E, Cerdá N, Boeckh-Behrens T, et al. Direct mechanical thrombectomy in tpa-ineligible and -eligible patients versus the bridging approach: a meta-analysis. J Neurointerv Surg. 2019;11:20–27.

    Google Scholar 

  118. Fang J, Wan Y-L, Chen C-K, Tsui P-H. Discrimination between newly formed and aged thrombi using empirical mode decomposition of ultrasound b-scan image. Biomed Res Int. 2015;2015:9.

    Google Scholar 

  119. Minnerup J, Kleinschnitz C. Visualization of clot composition in ischemic stroke. Do we get what we see? Stroke. 2011;42:1193–4.

    Article  PubMed  Google Scholar 

  120. Huang CC, Chen PY, Shih CC. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med Phys. 2013;40:042901.

    Article  PubMed  Google Scholar 

  121. Schmitt C, Hadj Henni A, Cloutier G. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior. J Biomech. 2011;44:622–9.

    Article  PubMed  Google Scholar 

  122. Riedel CH, Jensen U, Rohr A, Tietke M, Alfke K, Ulmer S, et al. Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions. Stroke. 2010;41:1659–64.

    Article  PubMed  Google Scholar 

  123. Fujimoto M, Salamon N, Mayor F, Yuki I, Takemoto K, Vinters HV, et al. Characterization of arterial thrombus composition by magnetic resonance imaging in a swine stroke model. Stroke. 2013;44:1463–5.

    Article  PubMed  Google Scholar 

  124. Gasparian GG, Sanossian N, Shiroishi MS, Liebeskind DS. Imaging of occlusive thrombi in acute ischemic stroke. Int J Stroke. 2015;10:298–305.

    Article  PubMed  Google Scholar 

  125. Brinjikji W, Duffy S, Burrows A, Hacke W, Liebeskind D, Majoie CBLM, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: a systematic review. J NeuroInterv Surg. 2017;9:529–34.

    Article  PubMed  Google Scholar 

  126. Fogelson AL, Guy RD. Immersed-boundary-type models of intravascular platelet aggregation. Comput Methods Appl Mech Eng. 2008;197:2087–104.

    Article  Google Scholar 

  127. Xie H, Kim K, Aglyamov SR, Emelianov SY, O’Donnell M, Weitzel WF, et al. Correspondence of ultrasound elasticity imaging to direct mechanical measurement in aging dvt in rats. Ultrasound Med Biol. 2005;31:1351–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Health CfDaR. Guidance for industry and fda staff pre-clinical and clinical studies for neurothrombectomy devices 2007.

    Google Scholar 

  129. Gu X, Qi Y, Erdman A, Li Z. The role of simulation in the design of a semi-enclosed tubular embolus retrieval. J Med Dev. 2017;11:021001-021001-021007.

    Google Scholar 

  130. Romero G, Higuera I, Martinez ML, Pearce G, Perkinson N, Roffe C, et al. Computational modeling of a new thrombectomy device for the extraction of blood clots. Adv Exp Med Biol. 2010:627–33.

    Google Scholar 

  131. Health CfDaR. Guidance for industry and fda staff - non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juyu Chueh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, S., Chueh, J., Puri, A.S., McHugh, P.E., Arslanian, R.A., Gounis, M.J. (2021). In Vitro Clot Modeling and Clinical Applications. In: Hui, F.K., Spiotta, A.M., Alexander, M.J., Hanel, R.A., Baxter, B.W. (eds) 12 Strokes. Springer, Cham. https://doi.org/10.1007/978-3-030-56857-3_2

Download citation

Publish with us

Policies and ethics