Skip to main content

Interleukin-31, a Potent Pruritus-Inducing Cytokine and Its Role in Inflammatory Disease and in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1290))

Abstract

Substantial new information has emerged supporting the fundamental role of the cytokine interleukin-31 (IL-31) in the genesis of chronic pruritus in a broad array of clinical conditions. These include inflammatory conditions, such as atopic dermatitis and chronic urticaria, to autoimmune conditions such as dermatomyositis and bullous pemphigoid, to the lymphoproliferative disorders of Hodgkin’s disease and cutaneous T-cell lymphoma. IL-31 is produced in greatest quantity by T-helper type 2 (Th2) cells and upon release, interacts with a cascade of other cytokines and chemokines to lead to pruritus and to a proinflammatory environment, particularly within the skin. Antibodies which neutralize IL-31 or which block the IL-31 receptor may reduce or eliminate pruritus and may diminish the manifestations of chronic cutaneous conditions associated with elevated IL-31. The role of IL-31 in these various conditions will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dillon SR, Sprecher C, Hammond A et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice [published correction appears in Nat Immunol. 2005 Jan;6(1):114]. Nat Immunol 5(7):752–760

    Article  CAS  PubMed  Google Scholar 

  2. Bilsborough J, Leung DY, Maurer M et al (2006) IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis [published correction appears in J Allergy Clin Immunol. 2006;117(5):1124 . Boguniewcz, Mark [corrected to Boguniewicz, Mark]]. J Allergy Clin Immunol 117(2):418–425

    Article  CAS  PubMed  Google Scholar 

  3. Cedeno-Laurent F, Singer EM, Wysocka M et al (2015) Improved pruritus correlates with lower levels of IL-31 in CTCL patients under different therapeutic modalities. Clin Immunol 158(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB (2013) Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 132(2):446–54.e5

    Article  CAS  PubMed  Google Scholar 

  5. Nobbe S, Dziunycz P, Mühleisen B et al (2012) IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta Derm Venereol 92(1):24–28

    Article  CAS  PubMed  Google Scholar 

  6. Ruzicka T, Mihara R (2017) Anti-Interleukin-31 receptor A antibody for atopic dermatitis. N Engl J Med 376(21):2093

    PubMed  Google Scholar 

  7. Singer EM, Shin DB, Nattkemper LA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 133(12):2783–2785

    Article  CAS  PubMed  Google Scholar 

  8. Raap U, Gehring M, Kleiner S et al (2017) Human basophils are a source of—and are differentially activated by—IL-31. Clin Exp Allergy 47(4):499–508

    Article  CAS  PubMed  Google Scholar 

  9. Rüdrich U, Gehring M, Papakonstantinou E et al (2018) Eosinophils are a major source of Interleukin-31 in bullous pemphigoid. Acta Derm Venereol 98(8):766–771

    Article  PubMed  CAS  Google Scholar 

  10. Bağci IS, Ruzicka T (2018) IL-31: a new key player in dermatology and beyond. J Allergy Clin Immunol 141(3):858–866

    Article  PubMed  CAS  Google Scholar 

  11. Ferretti E, Tripodo C, Pagnan G et al (2015) The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma. Leukemia 29(4):958–967

    Article  CAS  PubMed  Google Scholar 

  12. Moro K, Yamada T, Tanabe M et al (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540–544

    Article  CAS  PubMed  Google Scholar 

  13. Monticelli LA, Sonnenberg GF, Abt MC et al (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12(11):1045–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kim J, Kim BE, Leung DYM (2019) Pathophysiology of atopic dermatitis: clinical implications. Allergy Asthma Proc 40(2):84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang Y, Guo L, Qiu J et al (2015) IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16(2):161–169

    Article  CAS  PubMed  Google Scholar 

  16. Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281(1):154–168

    Article  CAS  PubMed  Google Scholar 

  17. Liew FY, Girard JP, Turnquist HR (2016) Interleukin-33 in health and disease. Nat Rev Immunol 16(11):676–689

    Article  CAS  PubMed  Google Scholar 

  18. Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5):479–490

    Article  CAS  PubMed  Google Scholar 

  19. Petra AI, Tsilioni I, Taracanova A, Katsarou-Katsari A, Theoharides TC (2018) Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. Allergy Asthma Proc 39(2):153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cornelissen C, Brans R, Czaja K et al (2011) Ultraviolet B radiation and reactive oxygen species modulate interleukin-31 expression in T lymphocytes, monocytes and dendritic cells. Br J Dermatol 165(5):966–975

    Article  CAS  PubMed  Google Scholar 

  21. Maier E, Werner D, Duschl A, Bohle B, Horejs-Hoeck J (2014) Human Th2 but not Th9 cells release IL-31 in a STAT6/NF-κB-dependent way. J Immunol 193(2):645–654

    Article  CAS  PubMed  Google Scholar 

  22. Miake S, Tsuji G, Takemura M et al (2019) IL-4 augments IL-31/IL-31 receptor alpha interaction leading to enhanced Ccl 17 and Ccl 22 production in dendritic cells: implications for atopic dermatitis. Int J Mol Sci 20(16):4053

    Article  CAS  PubMed Central  Google Scholar 

  23. Sugaya M (2015) Chemokines and skin diseases. Arch Immunol Ther Exp 63(2):109–115

    Article  CAS  Google Scholar 

  24. Liu LY, Bates ME, Jarjour NN, Busse WW, Bertics PJ, Kelly EA (2007) Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J Immunol 179(7):4840–4848

    Article  CAS  PubMed  Google Scholar 

  25. Altrichter S, Hawro T, Hänel K et al (2016) Successful omalizumab treatment in chronic spontaneous urticaria is associated with lowering of serum IL-31 levels. J Eur Acad Dermatol Venereol 30(3):454–455

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W (2008) Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 19(5–6):347–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ferretti E, Corcione A, Pistoia V (2017) The IL-31/IL-31 receptor axis: general features and role in tumor microenvironment. J Leukoc Biol 102(3):711–717

    Article  CAS  PubMed  Google Scholar 

  28. Kasraie S, Niebuhr M, Werfel T (2013) Interleukin (IL)-31 activates signal transducer and activator of transcription (STAT)-1, STAT-5 and extracellular signal-regulated kinase 1/2 and down-regulates IL-12p40 production in activated human macrophages. Allergy 68(6):739–747

    Article  CAS  PubMed  Google Scholar 

  29. Kasutani K, Fujii E, Ohyama S et al (2014) Anti-IL-31 receptor antibody is shown to be a potential therapeutic option for treating itch and dermatitis in mice. Br J Pharmacol 171(22):5049–5058

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nattkemper LA, Martinez-Escala ME, Gelman AB et al (2016) Cutaneous T-cell lymphoma and pruritus: the expression of IL-31 and its receptors in the skin. Acta Derm Venereol 96(7):894–898

    Article  CAS  PubMed  Google Scholar 

  31. Perrigoue JG, Zaph C, Guild K, Du Y, Artis D (2009) IL-31-IL-31R interactions limit the magnitude of Th2 cytokine-dependent immunity and inflammation following intestinal helminth infection. J Immunol 182(10):6088–6094

    Article  CAS  PubMed  Google Scholar 

  32. Silverberg JI (2017) Public health burden and epidemiology of atopic dermatitis. Dermatol Clin 35(3):283–289

    Article  CAS  PubMed  Google Scholar 

  33. Hussein YM, Shalaby SM, Nassar A, Alzahrani SS, Alharbi AS, Nouh M (2014) Association between genes encoding components of the IL-4/IL-4 receptor pathway and dermatitis in children. Gene 545(2):276–281

    Article  CAS  PubMed  Google Scholar 

  34. Esaki H, Brunner PM, Renert-Yuval Y et al (2016) Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol 138(6):1639–1651

    Article  CAS  PubMed  Google Scholar 

  35. Nograles KE, Zaba LC, Shemer A et al (2009) IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 123(6):1244–52.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salimi M, Barlow JL, Saunders SP et al (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meng J, Moriyama M, Feld M et al (2018) New mechanism underlying IL-31-induced atopic dermatitis. J Allergy Clin Immunol 141(5):1677–1689.e8

    Article  CAS  PubMed  Google Scholar 

  38. Cornelissen C, Marquardt Y, Czaja K et al (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129(2):426–433.e4338

    Article  CAS  PubMed  Google Scholar 

  39. Simpson EL, Bieber T, Guttman-Yassky E et al (2016) Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 375(24):2335–2348

    Article  CAS  PubMed  Google Scholar 

  40. Popovic B, Breed J, Rees DG et al (2017) Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody Tralokinumab as inhibition of binding to IL-13Rα1 and IL-13Rα2. J Mol Biol 429(2):208–219

    Article  CAS  PubMed  Google Scholar 

  41. Kasaian MT, Raible D, Marquette K et al (2011) IL-13 antibodies influence IL-13 clearance in humans by modulating scavenger activity of IL-13Rα2. J Immunol 187(1):561–569

    Article  CAS  PubMed  Google Scholar 

  42. Kabashima K, Furue M, Hanifin JM et al (2018) Nemolizumab in patients with moderate-to-severe atopic dermatitis: randomized, phase II, long-term extension study. J Allergy Clin Immunol 142(4):1121–1130.e7

    Article  CAS  PubMed  Google Scholar 

  43. Nattkemper LA, Tey HL, Valdes-Rodriguez R et al (2018) The genetics of chronic itch: gene expression in the skin of patients with atopic dermatitis and psoriasis with severe itch. J Invest Dermatol 138(6):1311–1317

    Article  CAS  PubMed  Google Scholar 

  44. Czarnecka-Operacz M, Polańska A, Klimańska M et al (2015) Itching sensation in psoriatic patients and its relation to body mass index and IL-17 and IL-31 concentrations. Postepy Dermatol Alergol 32(6):426–430

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim HJ, Zeidi M, Bonciani D et al (2018) Itch in dermatomyositis: the role of increased skin interleukin-31. Br J Dermatol 179(3):669–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kunsleben N, Rüdrich U, Gehring M, Novak N, Kapp A, Raap U (2015) IL-31 induces chemotaxis, calcium mobilization, release of reactive oxygen species, and CCL26 in eosinophils, which are capable to release IL-31. J Invest Dermatol 135(7):1908–1911

    Article  CAS  PubMed  Google Scholar 

  47. Gibbs BF, Patsinakidis N, Raap U (2019) Role of the pruritic cytokine IL-31 in autoimmune skin diseases. Front Immunol 10:1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diamandidou E, Cohen PR, Kurzrock R (1996) Mycosis fungoides and Sezary syndrome. Blood 88(7):2385–2409

    Article  CAS  PubMed  Google Scholar 

  49. Campbell JJ, Clark RA, Watanabe R, Kupper TS (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116(5):767–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guenova E, Watanabe R, Teague JE et al (2013) TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 19(14):3755–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sampogna F, Frontani M, Baliva G et al (2009) Quality of life and psychological distress in patients with cutaneous lymphoma. Br J Dermatol 160(4):815–822

    Article  CAS  PubMed  Google Scholar 

  52. Lewis DJ, Huang S, Duvic M (2018) Inflammatory cytokines and peripheral mediators in the pathophysiology of pruritus in cutaneous T-cell lymphoma. J Eur Acad Dermatol Venereol 32(10):1652–1656

    Article  CAS  PubMed  Google Scholar 

  53. Vowels BR, Cassin M, Vonderheid EC, Rook AH (1992) Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J Invest Dermatol 99(1):90–94

    Article  CAS  PubMed  Google Scholar 

  54. Suchin KR, Cassin M, Gottleib SL et al (2001) Increased interleukin 5 production in eosinophilic Sézary syndrome: regulation by interferon alfa and interleukin 12. J Am Acad Dermatol 44(1):28–32

    Article  CAS  PubMed  Google Scholar 

  55. Cosgrove SB, Wren JA, Cleaver DM et al (2013) Efficacy and safety of oclacitinib for the control of pruritus and associated skin lesions in dogs with canine allergic dermatitis. Vet Dermatol 24(5):479–e114

    Article  PubMed  PubMed Central  Google Scholar 

  56. Souza CP, Rosychuk RAW, Contreras ET, Schissler JR, Simpson AC (2018) A retrospective analysis of the use of lokivetmab in the management of allergic pruritus in a referral population of 135 dogs in the western USA. Vet Dermatol 29(6):489–e164

    Article  PubMed  Google Scholar 

  57. Feld M, Shpacovitch VM, Fastrich M, Cevikbas F, Steinhoff M (2010) Interferon-γ induces upregulation and activation of the interleukin-31 receptor in human dermal microvascular endothelial cells. Exp Dermatol 19(10):921–923

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain H. Rook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rook, A.H., Rook, K.A., Lewis, D.J. (2021). Interleukin-31, a Potent Pruritus-Inducing Cytokine and Its Role in Inflammatory Disease and in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1290. Springer, Cham. https://doi.org/10.1007/978-3-030-55617-4_8

Download citation

Publish with us

Policies and ethics