Skip to main content

Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion: A Deep Insight

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

  • 513 Accesses

Abstract

Nature has developed a synergistic association of plants with various microorganisms for sustainable geochemical cycles. Microorganisms play an important role in providing essential micronutrients to plants along with remediating the contaminated sites in association with plants as synergistic partners. The Industrial Revolution is the primary reason behind the rapid urbanisation and leads to the discharge of toxic and hazardous pollutants in water bodies which ultimately accumulate in the terrestrial environment. Endophytic microorganisms colonise inside the internal tissues of the plants and have better survival chances in comparison to self-reliant microorganisms due to their symbiotic relationship. These endophytes have tendency to degrade variable organic pollutants leading to enhancing growth, providing key elements and shielding plants from hazardous organic pollutants. Correspondingly, inorganic pollutants such as heavy metals are transformed via endophytes restricting their mobility inside the plants and higher organisms. Different mechanisms and pathways have been utilised by endophytes to accomplish this role. Hence this book chapter has been aimed towards phytoremediation first then precisely highlighting different endophytes with their possible role in removing contaminants and plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Powell JR et al (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Anyasi RO, Atagana HI (2015) Endophytes: an Indicator for improved phytoremediation of environmental pollutants. Journal of Environmental Indicators, 9:27

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362

    Article  CAS  PubMed  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Gognies S, Nowak J et al (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24(2):135–142

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS et al (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. J Environ Qual 23(6):1151–1157

    Article  CAS  Google Scholar 

  • Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. International Journal of Pharma and BioSciences 6(1): 333–343

    Google Scholar 

  • Chaudhry Q, Blom-Zandstra M et al (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12(1):34–48

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Shen J, Zhang X et al (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9(9):e106826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K and Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A and Chincholkar SB (eds.), Microbial Siderophores, Springer-Verlag Berlin Heidelberg 12: 1–42

    Google Scholar 

  • de Melo Pereira GV, Magalhães KT, Lorenzetii ER (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417

    Article  PubMed  Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Wasiullah, Malaviya D et al (2015) Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, 7:2189–2212.

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, et al (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences, USA 104: 16816–16821.

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179(2):318–333

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Oakley B, Xin G et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Curr Microbiol 47:23–33. https://doi.org/10.1007/BF03179967

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:1–3

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, D’souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25(5):442–451

    Article  CAS  PubMed  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ et al (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26(5):1424–1430

    Article  CAS  Google Scholar 

  • Fatima K, Imran A, Amin I et al (2016) Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res Int 23(7):6188–6196

    Article  CAS  PubMed  Google Scholar 

  • Feng NX, Yu J, Zhao HM et al (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583:352–368

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme and Microbial Technology, 35(4), 339–354. doi:10.1016/j.enzmictec.2004.05.006

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SED (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho YN, Mathew DC, Hsiao SC et al (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219:43–49

    Article  PubMed  CAS  Google Scholar 

  • Ho YN, Hsieh JL, Huang CC (2013) Construction of a plant–microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47

    Article  CAS  PubMed  Google Scholar 

  • Ijaz A, Imran A, ul Haq MA et al (2016) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405(1–2):179–195

    Article  CAS  Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58(1):179–188

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Kabra AN, Khandare RV, Govindwar SP (2013) Development of a bioreactor for remediation of textile effluent and dye mixture: a plant–bacterial synergistic strategy. Water Res 47(3):1035–1048

    Article  CAS  PubMed  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78(9):3504–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan Z, Doty S (2011) Endophyte-assisted phytoremediation. Plant Biol 12:97–105

    Google Scholar 

  • Khan Z, Roman D, Kintz T et al (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228

    Article  CAS  PubMed  Google Scholar 

  • Khan MU, Sessitsch A, Harris M et al (2015) Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci 5:755

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R et al (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (1999) Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues, Journal of Hazardous Substance Research: Vol. 2. https://doi.org/10.4148/1090-7025.1015

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40(1):238–246

    Article  CAS  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18

    Article  Google Scholar 

  • Luo S, Wan Y, Xiao X et al (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89(5):1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T, Chen L et al (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J et al (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23(1):175–188

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Cairney JW (2000) Ectomycorrhizas—extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32(11–12):1475–1484

    Article  CAS  Google Scholar 

  • Mesa V, Navazas A, González-Gil R et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83(8):e03411–e03416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra M, Prasad R, Varma A (2015) Endophytic fungi: Biodiversity and functions. International Journal of Pharma and BioSciences 6(1): 18–46

    Google Scholar 

  • Moore FP, Barac T, Borremans B (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29(7):539–556

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • Ojuederie O, Babalola O (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Patle PN, Navnage NP, Ramteke PR (2018) Endophytes in plant system: roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. Int J Chem Stud 6:270–274

    Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40(12):3054–3064

    Article  CAS  Google Scholar 

  • Pilon-Smits E. A. H. (2005). Phytoremediation. Annu. Rev. Plant Biol. 56, 15–39. 10.1146/annurev.arplant.56.032604.144214

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20(1):1–11

    Article  CAS  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sarma H, Forid N, Prasad R, Prasad MNV, Ma LQ, Rinklebe J (2021) Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2021.125493

  • Sgroy V, Cassán F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY et al (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol Ecol 29(2):191–196

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. App Microbiol Biotechnol 63(2):128–135

    Article  CAS  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81(9):1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • StÄ™pniewska Z, Kuźniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. App Microbiol Biotechnol 97(22):9589–9596

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    Article  CAS  PubMed  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology https://doi.org/10.1016/j.crbiot.2021.02.004

  • van der Lelie D, Barac T, Taghavi S, Vangronsveld J (2005) Response to Newman: new uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol 23(1):8–9

    Article  CAS  Google Scholar 

  • van der Lelie D, Taghavi S, Monchy S et al (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28(5):346–358

    Article  CAS  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A Juss. J Basic Microbiol 51(5):550–556

    Article  CAS  PubMed  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17(9):10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weilharter A, Mitter B, Shin MV (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain Ps JN. J Bacteriol 193(13):1–2

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S et al (2009a) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S et al (2009b) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Saenen E et al (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediation 13(3):244–255

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2(4):428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19(8):1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, She X (2018) Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium. Can J Microbiol 64(4):253–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Kaur, G., Nirwan, J. (2021). Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion: A Deep Insight. In: Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-54422-5_6

Download citation

Publish with us

Policies and ethics