Skip to main content

Noninvasive Fetal Electrocardiography: Models, Technologies, and Algorithms

  • Chapter
  • First Online:
Innovative Technologies and Signal Processing in Perinatal Medicine

Abstract

The fetal electrocardiogram (fECG) was first recorded from the maternal abdominal surface in the early 1900s. During the past 50 years, the most advanced electronics technologies and signal processing algorithms have been used to convert noninvasive fetal electrocardiography into a reliable technology for fetal cardiac monitoring. In this chapter, the major signal processing techniques, which have been developed for the modeling, extraction, and analysis of the fECG from noninvasive maternal abdominal recordings, are reviewed and compared with one another in detail. The major topics of the chapter include (1) the electrophysiology of the fECG from the signal processing viewpoint, (2) the mathematical model of the maternal volume conduction media and the waveform models of the fECG acquired from body surface leads, (3) the signal acquisition requirements, (4) model-based techniques for fECG noise and interference cancellation, including adaptive filters and semi-blind source separation techniques, and (5) recent algorithmic advances for fetal motion tracking and online fECG extraction from few number of channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term πCA was originally coined in [87], for extracting periodic signals, which resulted in GEVD of a pair matrices as in AMUSE [99].

  2. 2.

    Enforcing the diagonalization of Cx guarantees decorrelation of the extracted sources at a cost of consuming n(n − 1)/2 degrees of freedom of the matrix W. This is why some BSS algorithms do not enforce whitening or sphering but rather include the covariance matrix among the approximately diagonalized set of matrices at a cost of reduced performance [49].

References

  1. Andreotti, F., Riedl, M., Himmelsbach, T., Wedekind, D., Wessel, N., Stepan, H., Schmieder, C., Jank, A., Malberg, H., Zaunseder, S.: Robust fetal ECG extraction and detection from abdominal leads. Physiol. Meas. 35(8), 1551 (2014)

    Google Scholar 

  2. Andreotti, F., Behar, J., Zaunseder, S., Oster, J., Clifford, G.D.: Fetal ECG Synthetic Database (FECGSYNDB) (2016). https://doi.org/10.13026/C21P4T. https://physionet.org/content/fecgsyndb/

  3. Andreotti, F., Gräßer, F., Malberg, H., Zaunseder, S.: Non-invasive fetal ECG signal quality assessment for multichannel heart rate estimation. IEEE Trans. Biomed. Eng. 64(12), 2793–2802 (2017). https://doi.org/10.1109/tbme.2017.2675543

    Article  Google Scholar 

  4. Assaleh, K.: Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems. IEEE Trans. Biomed. Eng. 54(1), 59–68 (2006)

    Google Scholar 

  5. Åström, M., Santos, E.C., Sörnmo, L., Laguna, P., Wohlfart, B.: Vectorcardiographic loop alignment and the measurement of morphologic beat-to-beat variability in noisy signals. IEEE Trans. Biomed. Eng. 47(4), 497–506 (2000)

    Google Scholar 

  6. Bach, F., Jordan, M.: Beyond independent components: trees and clusters. J. Mach. Learn. Res. 4, 1205–1233 (2003). http://cmm.ensmp.fr/bach/bach03a.pdf

    MathSciNet  MATH  Google Scholar 

  7. Behar, J.: Extraction of clinical information from the non-invasive fetal electrocardiogram. Ph.D. thesis, Oxford University, UK (2014)

    Google Scholar 

  8. Behar, J., Johnson, A., Clifford, G.D., Oster, J.: A comparison of single channel fetal ECG extraction methods. Ann. Biomed. Eng. 42(6), 1340–1353 (2014)

    Google Scholar 

  9. Behar, J., Wolfberg, A., Zhu, T., Oster, J., Niksch, A., Mah, D., Chun, T., Greenberg, J., Tanner, C., Harrop, J., et al.: Evaluation of the fetal QT interval using non-invasive fetal ECG technology. Am. J. Obstet. Gynecol. 210(1), S283–S284 (2014)

    Google Scholar 

  10. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45, 434–444 (1997)

    Google Scholar 

  11. Ben-Arie, J., Rao, K.: Nonorthogonal representation of signals by Gaussians and Gabor functions. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 42(6), 402–413 (1995)

    MATH  Google Scholar 

  12. Biglari, H., Sameni, R.: Fetal motion estimation from noninvasive cardiac signal recordings. Physiol. Meas. 37(11), 2003–2023 (2016). http://stacks.iop.org/0967-3334/37/i=11/a=2003

    Google Scholar 

  13. Cardoso, J.F.: Multidimensional independent component analysis. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), vol. 4, pp. 1941–1944 (1998)

    Google Scholar 

  14. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (1999). https://doi.org/10.1162/089976699300016863

    Article  Google Scholar 

  15. Cardoso, J.F.: Source codes for blind source separation and independent component analysis. http://www2.iap.fr/users/cardoso/

  16. Cardoso, J.F., Laheld, B.: Equivariant adaptive source separation. Signal Process., IEEE Trans. 44(12), 3017–3030 (1996). https://doi.org/10.1109/78.553476

    Article  Google Scholar 

  17. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE – Proc. -F. 140, 362–370 (1993)

    Google Scholar 

  18. Clifford, G.D.: A novel framework for signal representation and source separation. J. Biol. Syst. 14(2), 169–183 (2006)

    Google Scholar 

  19. Clifford, G.D., McSharry, P.E.: A realistic coupled nonlinear artificial ECG, BP, and respiratory signal generator for assessing noise performance of biomedical signal processing algorithms. Proc. SPIE Int. Symp. Fluctuations Noise. 5467(34), 290–301 (2004)

    Google Scholar 

  20. Clifford, G.D., Shoeb, A., McSharry, P.E., Janz, B.A.: Model-based filtering, compression and classification of the ECG. Int. J. Bioelectromagnetism. 7(1), 158–161 (2005)

    Google Scholar 

  21. Clifford, G.D., Sameni, R., Ward, J., Robertson, J., Pettigrew, C., Wolfberg, A.: Comparing the fetal ST-segment acquired using a FSE and abdominal sensors. Am. J. Obstet. Gynecol. 201(6), S242 (2009)

    Google Scholar 

  22. Clifford, G.D., Lopez, D., Li, Q., Rezek, I.: Signal quality indices and data fusion for determining acceptability of electrocardiograms collected in noisy ambulatory environments. In: Computing in Cardiology, 2011, pp. 285–288. IEEE (2011)

    Google Scholar 

  23. Clifford, G.D., Sameni, R., Ward, J., Robinson, J., Wolfberg, A.J.: Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. Am. J. Obstet. Gynecol. 205(1), 47.e1–47.e5 (2011)

    Google Scholar 

  24. Commission, I.E.: Medical electrical equipment - Part 2-25: Particular requirements for the basic safety and essential performance of electrocardiographs. Standard, International Standard (2011)

    Google Scholar 

  25. Comon, P.: Supervised classification, a probabilistic approach. In: Verleysen, M. (ed.) ESANN-European Symposium on Artificial Neural Networks, pp. 111–128. D facto Publication, Brussels (1995). [invited paper]

    Google Scholar 

  26. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications. Elsevier Science, Amsterdam (2010)

    Google Scholar 

  27. Cremer, M.: Über die Direkte Ableitung der Aktionstrome des Menschlichen Herzens vom Oesophagus und Über das Elektrokardiogramm des Fetus. Münchener Medizinische Wochenschrift. 53, 811–813 (1906)

    Google Scholar 

  28. De Lathauwer, L., De Moor, B., Vandewalle, J.: Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 47, 567–572 (2000). https://doi.org/10.1109/10.841326

    Article  Google Scholar 

  29. De Moor, B.: Database for the Identification of Systems (DaISy). http://homes.esat.kuleuven.be/ smc/daisy/

    Google Scholar 

  30. Dessì, A., Pani, D., Raffo, L.: An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings. Physiol. Meas. 35(8), 1621 (2014)

    Google Scholar 

  31. Devedeux, D., Marque, C., Mansour, S., Germain, G., Duchêne, J.: Uterine electromyography: a critical review. Am. J. Obstet. Gynecol. 169(6), 1636–1653 (1993)

    Google Scholar 

  32. Farvet, A.G.: Computer matched filter location of fetal R-waves. Med. Biol. Eng. 6(5), 467–475 (1968)

    Google Scholar 

  33. Fatemi, M., Sameni, R.: An online subspace denoising algorithm for maternal ECG removal from fetal ECG signals. Iranian J. Sci. Technol., Trans. Electr. Eng. 41(1), 65–79 (2017)

    Google Scholar 

  34. Ferreol, A., Chevalier, P.: On the behavior of current second and higher order blind source separation methods for cyclostationary sources. IEEE Trans. Signal Process. 48, 1712–1725 (2000)

    Google Scholar 

  35. Gardner, W.A.: Cyclostationarity in communications and signal processing. Tech. Rep., DTIC Document (1994)

    Google Scholar 

  36. Hall, J., Hall, J., Guyton, A.: Guyton & Hall Physiology Review Guyton Physiology Series. Elsevier Saunders (2006)

    Google Scholar 

  37. Hamerling, S., Meinecke, F., Müller, K.R.: Analysing ICA components by injecting noise. In: Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Source Separation (ICA2003), pp. 149–154, Nara (2003). http://www.lis.inpg.fr/pages_perso/bliss/deliverables/d19.html

  38. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience (2001)

    Google Scholar 

  39. Jafarnia-Dabanloo, N., McLernon, D., Zhang, H., Ayatollahi, A., Johari-Majd, V.: A modified Zeeman model for producing HRV signals and its application to ECG signal generation. J. Theor. Biol. 244(2), 180–189 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Jamshidian-Tehrani, F.: Online noninvasive fetal cardiac signal extraction. Ph.D. thesis, Artificial Intelligence, School of Electrical & Computer Engineering, Shiraz University (2019)

    Google Scholar 

  41. Jamshidian-Tehrani, F., Sameni, R.: Fetal ECG extraction from time-varying and low-rank noninvasive maternal abdominal recordings. Physiol. Meas. 39(12), 125008 (2018)

    Google Scholar 

  42. Jamshidian-Tehrani, F., Sameni, R., Jutten, C.: Temporally nonstationary component analysis; application to noninvasive fetal electrocardiogram extraction. IEEE Trans. Biomed. Eng. (2019). https://doi.org/10.1109/TBME.2019.2936943

  43. John, W., Clark, J.: Chap. 4: The origin of biopotentials. In: Webster, J.G. (ed.) Medical Instrumentation: Application and Design. Wiley, Hoboken (2009)

    Google Scholar 

  44. Kabir, M.A., Shahnaz, C.: Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control. 7(5), 481–489 (2012)

    Google Scholar 

  45. Kanjilal, P., Kanjilal, P., Palit, S., Saha, G.: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 44(1), 51–59 (1997). https://doi.org/10.1109/10.553712

    Article  Google Scholar 

  46. Kester, W., Engineeri, A.D.I.: Data Conversion Handbook. Newnes, Burlington (2005)

    Google Scholar 

  47. Khamene, A., Negahdaripour, S.: A new method for the extraction of fetal ECG from the composite abdominal signal. IEEE Trans. Biomed. Eng. 47(4), 507–516 (2000). https://doi.org/10.1109/10.828150

    Article  Google Scholar 

  48. Laguna, P., Jané, R., Olmos, S., Thakor, N.V., Rix, H., Caminal, P.: Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model. Med. Biol. Eng. Comput. 34(1), 58–68 (1996)

    Google Scholar 

  49. Laheld, B., Cardoso, J.F.: Adaptive source separation without pre-whitening. In: EUSIPCO-94 - The 7th European Signal Processing Conference, pp. 183–186, Edinburgh (1994)

    Google Scholar 

  50. Larks, S.D.: Present status of fetal electrocardiography. Bio-Med. Electron, IRE Trans. 9(3), 176–180 (1962). https://doi.org/10.1109/TBMEL.1962.4322994

    Article  Google Scholar 

  51. Leski, J.: Robust weighted averaging [of biomedical signals]. IEEE Trans. Biomed. Eng. 49(8), 796–804 (2002). https://doi.org/10.1109/TBME.2002.800757

    Article  Google Scholar 

  52. Leski, J., Gacek, A.: Computationally effective algorithm for robust weighted averaging. IEEE Trans. Biomed. Eng. 51(7), 1280–1284 (2004). https://doi.org/10.1109/TBME.2004.827953

    Article  Google Scholar 

  53. Li, Q., Mark, R.G., Clifford, G.D.: Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29(1), 15 (2007)

    Google Scholar 

  54. Li, R., Frasch, M.G., Wu, H.T.: Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection. Front. Physiol. 8, 277 (2017)

    Google Scholar 

  55. Liu, G., Luan, Y.: An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS. Med. Biol. Eng. Comput. 53(11), 1113–1127 (2015). https://doi.org/10.1007/s11517-015-1389-1

    Article  Google Scholar 

  56. Ma, Y., Xiao, Y., Wei, G., Sun, J.: A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction. Meas. Sci. Technol. 27(1), 015703 (2015). https://doi.org/10.1088/0957-0233/27/1/015703

    Article  Google Scholar 

  57. Malmivuo, J.: Chap. 16: Biomagnetism. In: Bronzino, J.D. (ed.) The Biomedical Engineering Handbook, 2nd edn. CRC Press LLC, Boca Raton (2000)

    Google Scholar 

  58. Malmivuo, J.A., Plonsey, R.: Bioelectromagnetism, Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press (1995). http://butler.cc.tut.fi/malmivuo/bem/bembook

  59. Martens, S.M., Rabotti, C., Mischi, M., Sluijter, R.J.: A robust fetal ECG detection method for abdominal recordings. Physiol. Meas. 28(4), 373 (2007). https://doi.org/10.1088/0967-3334/28/4/004

    Article  Google Scholar 

  60. McDonnell, C., Clifford, G., Sameni, R., Ward, J., Robertson, J., Wolfberg, A.: Comparison of abdominal sensors to a fetal scalp electrode for fetal ST analysis during labor. Am. J. Obstet. Gynecol. 204(1), S256 (2011)

    Google Scholar 

  61. McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamic model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50, 289–294 (2003)

    Google Scholar 

  62. Meinecke, F., Ziehe, A., Kawanabe, M., Müller, K.R.: A resampling approach to estimate the stability of one-dimensional or multidimensional independent components. IEEE Trans. Biomed. Eng. 49(12) Pt 2, 1514–1525 (2002)

    Google Scholar 

  63. Narimani, H.: Application of Kalman and H-∞ filters in electrocardiogram denoising. Master’s thesis, Biomedical Engineering, School of Electrical & Computer Engineering, Shiraz University (2014)

    Google Scholar 

  64. Narimani, H., Sameni, R.: Electrocardiogram denoising using H-infinity filters. In: Electrical Engineering (ICEE), 2015 23rd Iranian Conference on (2015)

    Google Scholar 

  65. Niknazar, M., Rivet, B., Jutten, C.: Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE Trans. Biomed. Eng. 60(5), 1345–1352 (2013)

    Google Scholar 

  66. Oostendorp, T.: Modeling the fetal ECG. Ph.D. dissertation, K. U. Nijmegen, The Netherlands (1989). http://hdl.handle.net/2066/113606

  67. Outram, N.J., Ifeachor, E.C., Eetvelt, P.W.J.V., Curnow, J.S.H.: Techniques for optimal enhancement and feature extraction of fetal electrocardiogram. IEE Proc.-Sci. Meas. Technol. 142, 482–489 (1995)

    Google Scholar 

  68. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3), 230–236 (1985). https://doi.org/10.1109/TBME.1985.325532

    Article  Google Scholar 

  69. Park, Y., Lee, K., Youn, D., Kim, N., Kim, W., Park, S.: On detecting the presence of fetal R-wave using the moving averaged magnitude difference algorithm. IEEE Trans. Biomed. Eng. 39(8), 868–871 (1992). https://doi.org/10.1109/10.148396

    Article  Google Scholar 

  70. Parra, L., Sajda, P.: Blind source separation via generalized eigenvalue decomposition. J. Mach. Learn. Res. 4, 1261–1269 (2003)

    MathSciNet  MATH  Google Scholar 

  71. Pham, D.T., Cardoso, J.F.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Signal Process. 49(9), 1837–1848 (2001)

    MathSciNet  MATH  Google Scholar 

  72. PhysioNet: Abdominal and direct fetal electrocardiogram database. National Institutes of Health. https://physionet.org/physiobank/database/adfecgdb/

  73. PhysioNet: Noninvasive fetal ECG database. National Institutes of Health. physionet.org/pn3/nifecgdb/

  74. Sameni, R.: Extraction of fetal cardiac signals from an array of maternal abdominal recordings. Ph.D. thesis, Sharif University of Technology – Institut National Polytechnique de Grenoble (2008). http://www.sameni.info/Publications/Thesis/PhDThesis.pdf

  75. Sameni, R.: Online filtering using piecewise smoothness priors: application to normal and abnormal electrocardiogram denoising. Signal Process. 133(4), 52–63 (2017). https://doi.org/10.1016/j.sigpro.2016.10.019

    Article  Google Scholar 

  76. Sameni, R.: The Open-Source Electrophysiological Toolbox (OSET), version 3.14 (2018). https://gitlab.com/rsameni/OSET/

  77. Sameni, R., Clifford, G.D.: A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol Ther J (TOPETJ). 3, 4–20 (2010). https://doi.org/10.2174/1876536X01003010004

    Article  Google Scholar 

  78. Sameni, R., Shamsollahi, M.B., Jutten, C.: Filtering electrocardiogram signals using the extended Kalman filter. In: Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 5639–5642, Shanghai (2005). https://doi.org/10.1109/IEMBS.2005.1615765

  79. Sameni, R., Shamsollahi, M.B., Jutten, C., Babaie-Zadeh, M.: Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model. In: Proceedings of the 32nd Annual International Conference on Computers in Cardiology, pp. 1017–1020, Lyon (2005)

    Google Scholar 

  80. Sameni, R., Jutten, C., Shamsollahi, M.B.: What ICA provides for ECG processing: application to noninvasive fetal ECG extraction. In: Proceedings of the International Symposium on Signal Processing and Information Technology (ISSPIT’06), pp. 656–661. Vancouver, Canada (2006)

    Google Scholar 

  81. Sameni, R., Clifford, G.D., Jutten, C., Shamsollahi, M.B.: Multichannel ECG and noise modeling: application to maternal and fetal ECG signals. EURASIP J. Adv. Signal Process. 2007, 43407, 14 pages (2007). https://doi.org/10.1155/2007/43407

    Article  MATH  Google Scholar 

  82. Sameni, R., Shamsollahi, M.B., Jutten, C., Clifford, G.D.: A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54(12), 2172–2185 (2007). https://doi.org/10.1109/TBME.2007.897817

    Article  MATH  Google Scholar 

  83. Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8), 1935–1940 (2008). https://doi.org/10.1109/TBME.2008.919714

    Article  Google Scholar 

  84. Sameni, R., Shamsollahi, M.B., Jutten, C.: Model-based Bayesian filtering of cardiac contaminants from biomedical recordings. Physiol. Meas. 29(5), 595–613 (2008). https://doi.org/10.1088/0967-3334/29/5/006

    Article  Google Scholar 

  85. Sameni, R., Jutten, C., Shamsollahi, M., Clifford, G.: Extraction of Fetal Cardiac Signals (2010). US Patent

    Google Scholar 

  86. Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace decomposition. IEEE Trans. Signal Process. 58(4), 2363–2374 (2010)

    MathSciNet  MATH  Google Scholar 

  87. Saul, L.K., Allen, J.B.: Periodic component analysis: an Eigenvalue method for representing periodic structure in speech. In: NIPS, pp. 807–813 (2000). http://www.cs.cmu.edu/Groups/NIPS/00papers-pub-on-web/SaulAllen.pdf

    Google Scholar 

  88. Scher, A.M., Young, A., Meredith, W.M.: Factor analysis of the electrocardiogram: test of electrocardiographic theory: normal hearts. Circ. Res. 8(3), 519–526 (1960)

    Google Scholar 

  89. Shao, M., Barner, K., Goodman, M.: An interference cancellation algorithm for noninvasive extraction of transabdominal fetal electroencephalogram (TaFEEG). IEEE Trans. Biomed. Eng. 51(3), 471–483 (2004). https://doi.org/10.1109/TBME.2003.821011

    Article  Google Scholar 

  90. Silva, I., Behar, J., Sameni, R., Zhu, T., Oster, J., Clifford, G.D., Moody, G.B.: Noninvasive fetal ECG: the physionet/computing in cardiology challenge 2013. In: Computing in Cardiology Conference (CinC), 2013, pp. 149–152. IEEE (2013)

    Google Scholar 

  91. Snowden, S., Simpson, N.A., Walker, J.J.: A digital system for recording the electrical activity of the uterus. Physiol. Meas. 22(4), 673–679 (2001)

    Google Scholar 

  92. Sörnmo, L.: Vectorcardiographic loop alignment and morphologic beat-to-beat variability. IEEE Trans. Biomed. Eng. 45(12), 1401–1413 (1998)

    Google Scholar 

  93. Sörnmo, L., Borjesson, P.O., Nygards, M.E., Pahlm, O.: A method for evaluation of QRS shape features using a mathematical model for the ECG. IEEE Trans. Biomed. Eng. BME-28(10), 713–717 (1981)

    Google Scholar 

  94. Stinstra, J.: Reliability of the fetal magnetocardiogram. Ph.D. thesis, University of Twente, Enschede, The Netherlands (2001). http://doc.utwente.nl/35964/

  95. Stogbauer, H., Kraskov, A., Astakhov, S.A., Grassberger, P.: Least dependent component analysis based on mutual information. Phys. Rev. E. 70, 066123 (2004). https://doi.org/10.1103/PhysRevE.70.066123

    Article  Google Scholar 

  96. Strang, G.: Linear algebra and its applications, 3rd edn. Brooks/Cole, Thomson Learning, USA (1988).

    Google Scholar 

  97. Swarnalatha, R., Prasad, D.: A novel technique for extraction of FECG using multi stage adaptive filtering. J. Appl. Sci. 10(4), 319–324 (2010)

    Google Scholar 

  98. Texas Instruments: Analog front-end design for ECG systems using delta-sigma ADCs (2010)

    Google Scholar 

  99. Tong, L., Liu, R.W., Soon, V., Huang, Y.F.: Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits Syst. 38, 499–509 (1991)

    MATH  Google Scholar 

  100. van Trees, H.: Detection, Estimation, and Modulation Theory. Part I. Wiley, New York (2001)

    MATH  Google Scholar 

  101. Vigneron, V., Paraschiv-Ionescu, A., Azancot, A., Sibony, O., Jutten, C.: Fetal electrocardiogram extraction based on non-stationary ICA and wavelet denoising. In: Signal Processing and Its Applications, 2003. Proceedings. Seventh International Symposium on 2, pp. 69–72, vol. 2 (1–4 July 2003). https://doi.org/10.1109/ISSPA.2003.1224817

  102. Webster, J.G. (ed.): Medical Instrumentation: Application and Design, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  103. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings IEEE International Conference on Computer Vision (2), pp. 975–982 (1999). citeseer.ist.psu.edu/weiss99segmentation.html

    Google Scholar 

  104. Widrow, B., Glover, J., McCool, J., Kaunitz, J., Williams, C., Hearn, H., Zeidler, J., Dong, E., Goodlin, R.: Adaptive noise cancelling: principles and applications. Proc. IEEE. 63(12), 1692–1716 (1975)

    Google Scholar 

  105. Yeredor, A.: On optimal selection of correlation matrices for matrix-pencil-based separation. In: International Conference on Independent Component Analysis and Signal Separation, pp. 187–194. Springer, Berlin, Heidelberg (2009)

    MATH  Google Scholar 

  106. Yeredor, A.: Chapter 7: Second-order methods based on color. In: Handbook of Blind Source Separation, pp. 227–279. Elsevier (2010). https://www.elsevier.com/books/handbook-of-blind-source-separation/comon/978-0-12-374726-6

  107. Yeredor, A.: Performance analysis of GEVD-based source separation with second-order statistics. IEEE Trans. Signal Process. 59(10), 5077–5082 (2011)

    MathSciNet  MATH  Google Scholar 

  108. Zarzoso, V., Nandi, A.: Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 48(1), 12–18 (2001). https://doi.org/10.1109/10.900244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sameni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sameni, R. (2021). Noninvasive Fetal Electrocardiography: Models, Technologies, and Algorithms. In: Pani, D., Rabotti, C., Signorini, M.G., Burattini, L. (eds) Innovative Technologies and Signal Processing in Perinatal Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-54403-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54403-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54402-7

  • Online ISBN: 978-3-030-54403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics