Skip to main content

Rotational Thromboelastometry (ROTEM®)

  • Chapter
  • First Online:
Book cover Trauma Induced Coagulopathy

Abstract

Thromboelastometry (ROTEM®) is an advancement of the classical thromboelastography. Several technical enhancements made already the semiautomated ROTEM® delta device more robust and user-friendly, reduced intra- and inter-operator variability, and improved the diagnostic performance. This allows for using the device at the bedside in a mobile way and in a multiuser environment, even in military settings. The new ROTEM® sigma device still uses the proven viscoelastic pin-and-cup technology but avoids any pipetting as a cartridge-based, fully automated ROTEM® device. The ROTEM® system is not only able to detect multiple aspects of trauma-induced coagulopathy (TIC) and disseminated intravascular coagulation (DIC), but also it allows for the prediction of bleeding, massive transfusion, thrombosis, and mortality, too. Furthermore, the ROTEM® device is designed to guide hemostatic therapy with allogeneic blood products (RBC, FFP, cryoprecipitate, and platelets) and, in particular, with specific coagulation factor concentrates (fibrinogen concentrate, prothrombin complex concentrate (PCC), factor XIII concentrate, and rFVIIa). Here, the combination of specific ROTEM® assays improved the diagnostic performance significantly. Finally, the implementation of ROTEM®-guided bleeding management algorithms (“Theranostic Approach”) has been shown to reduce transfusion requirements, complication rates, morbidity, mortality, and hospital costs in trauma and other clinical settings. Thereby, ROTEM® implements “Precision Medicine” in hemostasis management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartert H. Blutgerinnungsstudien mit der Thrombe-lastographie, einem neuen Untersuchungsverfahren. Klin Wschr. 1948;26(37/38):577–83.

    Article  CAS  PubMed  Google Scholar 

  2. Calatzis A, Fritzsche P, Calatzis A, Kling M, Hipp R, Sternberger A. A comparison of the technical principle of the ROTEG coagulation analyser and conventional thrombelastographic systems. Ann Hematol. 1996;72(1 Suppl):P90.

    Google Scholar 

  3. Winearls J, Reade M, Miles H, Bulmer A, Campbell D, Görlinger K, Fraser JF. Targeted coagulation management in severe trauma: the controversies and the evidence. Anesth Analg. 2016;123(4):910–24.

    Article  PubMed  Google Scholar 

  4. Sakai T. Comparison between thromboelastography and thromboelastometry. Minerva Anestesiol. 2019;85(12):1346–56.

    Article  PubMed  Google Scholar 

  5. Mauch J, Spielmann N, Hartnack S, Madjdpour C, Kutter AP, Bettschart-Wolfensberger R, Weiss M, Haas T. Intrarater and interrater variability of point of care coagulation testing using the ROTEM delta. Blood Coagul Fibrinolysis. 2011;22(8):662–6. https://doi.org/10.1097/MBC.0b013e32834aa806.

    Article  PubMed  Google Scholar 

  6. Haas T, Spielmann N, Mauch J, Speer O, Schmugge M, Weiss M. Reproducibility of thrombelastometry (ROTEM®): point-of-care versus hospital laboratory performance. Scand J Clin Lab Invest. 2012;72(4):313–7. https://doi.org/10.3109/00365513.2012.665474.

    Article  PubMed  Google Scholar 

  7. Anderson L, Quasim I, Steven M, Moise SF, Shelley B, Schraag S, Sinclair A. Interoperator and intraoperator variability of whole blood coagulation assays: a comparison of thromboelastography and rotational thromboelastometry. J Cardiothorac Vasc Anesth. 2014;28(6):1550–7. https://doi.org/10.1053/j.jvca.2014.05.023.

    Article  PubMed  Google Scholar 

  8. Schenk B, Görlinger K, Treml B, Tauber H, Fries D, Niederwanger C, Oswald E, Bachler M. A comparison of the new ROTEM® sigma with its predecessor, the ROTEM delta. Anaesthesia. 2019;74(3):348–56.

    Article  CAS  PubMed  Google Scholar 

  9. Bouzat P, Guerin R, Boussat B, Nicolas J, Lambert A, Greze J, Maegele M, David JS. Diagnostic performance of thromboelastometry in trauma-induced coagulopathy: a comparison between two level I trauma centres using two different devices. Eur J Trauma Emerg Surg. 2019. https://doi.org/10.1007/s00068-019-01165-7. [Epub ahead of print].

  10. Gratz J, Güting H, Thorn S, Brazinova A, Görlinger K, Schäfer N, Schöchl H, Stanworth S, Maegele M. Protocolised thromboelastometric-guided haemostatic management in patients with traumatic brain injury: a pilot study. Anaesthesia. 2019;74(7):883–90.

    Article  CAS  PubMed  Google Scholar 

  11. Ichikawa J, Kodaka M, Nishiyama K, Hirasaki Y, Ozaki M, Komori M. Reappearance of circulating heparin in whole blood heparin concentration-based management does not correlate with postoperative bleeding after cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(4):1003–7.

    Article  PubMed  CAS  Google Scholar 

  12. Hartmann M, Szalai C, Saner FH. Hemostasis in liver transplantation: pathophysiology, monitoring, and treatment. World J Gastroenterol. 2016;22(4):1541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shander A, Görlinger K. Blindspots and limitations in viscoelastic testing in pregnancy. Int J Obstet Anesth. 2019;38:4–9.

    Article  CAS  PubMed  Google Scholar 

  14. Larsen OH, Fenger-Eriksen C, Christiansen K, Ingerslev J, Sørensen B. Diagnostic performance and therapeutic consequence of thromboelastometry activated by kaolin versus a panel of specific reagents. Anesthesiology. 2011;115(2):294–302. https://doi.org/10.1097/ALN.0b013e318220755c.

    Article  CAS  PubMed  Google Scholar 

  15. Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma. 2010;69(Suppl 1):S40–8. https://doi.org/10.1097/TA.0b013e3181e4257b.

    Article  PubMed  Google Scholar 

  16. Tarmey NT, Woolley T, Jansen JO, Doran CM, Easby D, Wood PR, Midwinter MJ. Evolution of coagulopathy monitoring in military damage-control resuscitation. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S417–22. https://doi.org/10.1097/TA.0b013e31827546c0.

    Article  PubMed  Google Scholar 

  17. Woolley T, Midwinter M, Spencer P, Watts S, Doran C, Kirkman E. Utility of interim ROTEM® values of clot strength, A5 and A10, in predicting final assessment of coagulation status in severely injured battle patients. Injury. 2013;44(5):593–9. https://doi.org/10.1016/j.injury.2012.03.018.

    Article  CAS  PubMed  Google Scholar 

  18. Keene DD, Nordmann GR, Woolley T. Rotational thromboelastometry-guided trauma resuscitation. Curr Opin Crit Care. 2013;19(6):605–12. https://doi.org/10.1097/MCC.0000000000000021.

    Article  PubMed  Google Scholar 

  19. Benson G. Rotational thromboelastometry and its use in directing the management of coagulopathy in the battle injured trauma patient. J Perioper Pract. 2014;24(1–2):25–8.

    Article  CAS  PubMed  Google Scholar 

  20. Modesti PA, Rapi S, Paniccia R, Bilo G, Revera M, Agostoni P, Piperno A, Cambi GE, Rogolino A, Biggeri A, Mancia G, Gensini GF, Abbate R, Parati G. Index measured at an intermediate altitude to predict impending acute mountain sickness. Med Sci Sports Exerc. 2011;43(10):1811–8. https://doi.org/10.1249/MSS.0b013e31821b55df.

    Article  PubMed  Google Scholar 

  21. Rahe-Meyer N, Solomon C, Vorweg M, Becker S, Stenger K, Winterhalter M, Lang T. Multicentric comparison of single portion reagents and liquid reagents for thromboelastometry. Blood Coagul Fibrinolysis. 2009;20(3):218–22. https://doi.org/10.1097/MBC.0b013e328327355d.

    Article  PubMed  Google Scholar 

  22. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6. https://doi.org/10.1097/TA.0b013e31825b5c10.

    Article  CAS  PubMed  Google Scholar 

  23. Lang T, Toller W, Gütl M, Mahla E, Metzler H, Rehak P, März W, Halwachs-Baumann G. Different effects of abciximab and cytochalasin D on clot strength in thrombelastography. J Thromb Haemost. 2004;2(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  24. Schlimp CJ, Solomon C, Ranucci M, Hochleitner G, Redl H, Schöchl H. The effectiveness of different functional fibrinogen polymerization assays in eliminating platelet contribution to clot strength in thromboelastometry. Anesth Analg. 2014;118(2):269–76. https://doi.org/10.1213/ANE.0000000000000058.

    Article  CAS  PubMed  Google Scholar 

  25. Olde Engberink RH, Kuiper GJ, Wetzels RJ, Nelemans PJ, Lance MD, Beckers EA, Henskens YM. Rapid and correct prediction of thrombocytopenia and hypofibrinogenemia with rotational thromboelastometry in cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(2):210–6. https://doi.org/10.1053/j.jvca.2013.12.004.

    Article  PubMed  Google Scholar 

  26. Gronchi F, Perret A, Ferrari E, Marcucci CM, Flèche J, Crosset M, Schoettker P, Marcucci C. Validation of rotational thromboelastometry during cardiopulmonary bypass: a prospective, observational in-vivo study. Eur J Anaesthesiol. 2014;31(2):68–75. https://doi.org/10.1097/EJA.0b013e328363171a.

    Article  CAS  PubMed  Google Scholar 

  27. Adamzik M, Eggmann M, Frey UH, Görlinger K, Bröcker-Preuss M, Marggraf G, Saner F, Eggebrecht H, Peters J, Hartmann M. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care. 2010;14(5):R178. https://doi.org/10.1186/cc9284.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Görlinger K, Bergmann L, Dirkmann D. Coagulation management in patients undergoing mechanical circulatory support. Best Pract Res Clin Anaesthesiol. 2012;26(2):179–98. https://doi.org/10.1016/j.bpa.2012.04.003.

    Article  PubMed  Google Scholar 

  29. Adamzik M, Schäfer S, Frey UH, Becker A, Kreuzer M, Winning S, Frede S, Steinmann J, Fandrey J, Zacharowski K, Siffert W, Peters J, Hartmann M. The NFKB1 promoter polymorphism (-94ins/delATTG) alters nuclear translocation of NF-κB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology. 2013;118(1):123–33. https://doi.org/10.1097/ALN.0b013e318277a652.

    Article  CAS  PubMed  Google Scholar 

  30. Müller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18(1):R30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sucker C, Zotz RB, Görlinger K, Hartmann M. Rotational thrombelastometry for the bedside monitoring of recombinant hirudin. Acta Anaesthesiol Scand. 2008;52(3):358–62. https://doi.org/10.1111/j.1399-6576.2007.01550.x.

    Article  CAS  PubMed  Google Scholar 

  32. Schaden E, Schober A, Hacker S, Kozek-Langenecker S. Ecarin modified rotational thrombelastometry: a point-of-care applicable alternative to monitor the direct thrombin inhibitor argatroban. Wien Klin Wochenschr. 2013;125(5–6):156–9. https://doi.org/10.1007/s00508-013-0327-1.

    Article  CAS  PubMed  Google Scholar 

  33. Körber MK, Langer E, Köhr M, Wernecke KD, Korte W, von Heymann C. In vitro and ex vivo measurement of prophylactic dabigatran concentrations with a new Eecarin-based thromboelastometry test. Transfus Med Hemother. 2017;44(2):100–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vedovati MC, Mosconi MG, Isidori F, Agnelli G, Becattini C. Global thromboelastometry in patients receiving direct oral anticoagulants: the RO-DOA study. J Thromb Thrombolysis. 2019. https://doi.org/10.1007/s11239-019-01956-0. [Epub ahead of print].

  35. Erber M, Lee G. Development of cryopelletization and formulation measures to improve stability of Echis carinatus venum protein for use in diagnostic rotational thromboelastometry. Int J Pharm. 2015;495(2):692–700.

    Article  CAS  PubMed  Google Scholar 

  36. Sørensen B, Johansen P, Christiansen K, Woelke M, Ingerslev J. Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation. J Thromb Haemost. 2003;1(3):551–8.

    Article  PubMed  Google Scholar 

  37. Lang T, von Depka M. Possibilities and limitations of thrombelastometry-graphy. Hamostaseologie. 2006;26(3 Suppl 1):S20–9.

    CAS  PubMed  Google Scholar 

  38. Görlinger K, Jambor C, Hanke AA, Dirkmann D, Adamzik M, Hartmann M, Rahe-Meyer N. Perioperative coagulation management and control of platelet transfusion by point-of-care platelet function analysis. Transfus Med Hemother. 2007;34(6):396–411. https://doi.org/10.1159/000109642.

    Article  Google Scholar 

  39. Tem Innnovations GmbH. ROTEM® delta Manual 2.2.0.01. EN 2012.

    Google Scholar 

  40. Tem Innnovations GmbH. ROTEM® sigma Manual 3.2.0.01. EN 2015.

    Google Scholar 

  41. Lang T, Bauters A, Braun SL, Pötzsch B, von Pape KW, Kolde HJ, Lakner M. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis. 2005;16(4):301–10.

    Article  PubMed  Google Scholar 

  42. Haizinger B, Gombotz H, Rehak P, Geiselseder G, Mair R. Activated thrombelastogram in neonates and infants with complex congenital heart disease in comparison with healthy children. Br J Anaesth. 2006;97(4):545–52.

    Article  CAS  PubMed  Google Scholar 

  43. Oswald E, Stalzer B, Heitz E, Weiss M, Schmugge M, Strasak A, Innerhofer P, Haas T. Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth. 2010;105(6):827–35. https://doi.org/10.1093/bja/aeq258.

    Article  CAS  PubMed  Google Scholar 

  44. Huissoud C, Carrabin N, Benchaib M, Fontaine O, Levrat A, Massignon D, Touzet S, Rudigoz RC, Berland M. Coagulation assessment by rotation thrombelastometry in normal pregnancy. Thromb Haemost. 2009;101(4):755–61.

    Article  CAS  PubMed  Google Scholar 

  45. Oudghiri M, Keita H, Kouamou E, Boutonnet M, Orsini M, Desconclois C, Mandelbrot L, Daures JP, Stépanian A, Peynaud-Debayle E, de Prost D. Reference values for rotation thromboelastometry (ROTEM®) parameters following non-haemorrhagic deliveries. Correlations with standard haemostasis parameters. Thromb Haemost. 2011;106(1):176–8. https://doi.org/10.1160/TH11-02-0058.

    Article  CAS  PubMed  Google Scholar 

  46. de Lange NM, van Rheenen-Flach LE, Lancé MD, Mooyman L, Woiski M, van Pampus EC, Porath M, Bolte AC, Smits L, Henskens YM, Scheepers HC. Peri-partum reference ranges for ROTEM(R) thromboelastometry. Br J Anaesth. 2014;112(5):852–9. https://doi.org/10.1093/bja/aet480.

    Article  PubMed  Google Scholar 

  47. Sokou R, Foudoulaki-Paparizos L, Lytras T, Konstantinidi A, Theodoraki M, Lambadaridis I, Gounaris A, Valsami S, Politou M, Gialeraki A, Nikolopoulos GK, Iacovidou N, Bonovas S, Tsantes AE. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin Chem Lab Med. 2017;55(10):1592–7.

    Article  CAS  PubMed  Google Scholar 

  48. Görlinger K, Pérez-Ferrer A, Dirkmann D, Saner F, Maegele M, Calatayud ÁAP, Kim TY. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J Anesthesiol. 2019;72(4):297–322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dirkmann D, Görlinger K, Dusse F, Kottenberg E, Peters J. Early thromboelastometric variables reliably predict maximum clot firmness in patients undergoing cardiac surgery: a step towards earlier decision making. Acta Anaesthesiol Scand. 2013;57(5):594–603. https://doi.org/10.1111/aas.12040.

    Article  CAS  PubMed  Google Scholar 

  50. Görlinger K, Dirkmann D, Solomon C, Hanke AA. Fast interpretation of thromboelastometry in non-cardiac surgery: reliability in patients with hypo-, normo-, and hypercoagulability. Br J Anaesth. 2013;110(2):222–30. https://doi.org/10.1093/bja/aes374.

    Article  PubMed  Google Scholar 

  51. Song JG, Jeong SM, Jun IG, Lee HM, Hwang GS. Five-minute parameter of thromboelastometry is sufficient to detect thrombocytopenia and hypofibrinogenaemia in patients undergoing liver transplantation. Br J Anaesth. 2014;112(2):290–7. https://doi.org/10.1093/bja/aet325.

    Article  CAS  PubMed  Google Scholar 

  52. Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, Stanworth S, Brohi K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51. https://doi.org/10.1111/j.1538-7836.2012.04752.x.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer AS, Meyer MA, Sørensen AM, Rasmussen LS, Hansen MB, Holcomb JB, Cotton BA, Wade CE, Ostrowski SR, Johansson PI. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J Trauma Acute Care Surg. 2014;76(3):682–90. https://doi.org/10.1097/TA.0000000000000134.

    Article  PubMed  Google Scholar 

  54. Dirkmann D, Görlinger K, Peters J. Assessment of early thromboelastometric variables from extrinsically activated assays with and without aprotinin for rapid detection of fibrinolysis. Anesth Analg. 2014;119(3):533–42. https://doi.org/10.1213/ANE.0000000000000333.

    Article  CAS  PubMed  Google Scholar 

  55. Davenport R, Manson J, De’Ath H, Platton S, Coates A, Allard S, Hart D, Pearse R, Pasi KJ, MacCallum P, Stanworth S, Brohi K. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8. https://doi.org/10.1097/CCM.0b013e3182281af5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dekker SE, Viersen VA, Duvekot A, de Jong M, van den Brom CE, van de Ven PM, Schober P, Boer C. Lysis onset time as diagnostic rotational thromboelastometry parameter for fast detection of hyperfibrinolysis. Anesthesiology. 2014;121(1):89–97. https://doi.org/10.1097/ALN.0000000000000229.

    Article  CAS  PubMed  Google Scholar 

  57. Harr JN, Moore EE, Chin TL, Chapman MP, Ghasabyan A, Stringham JR, Banerjee A, Silliman CC. Viscoelastic hemostatic fibrinogen assays detect fibrinolysis early. Eur J Trauma Emerg Surg. 2015;41(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  58. Abuelkasem E, Lu S, Tanaka K, Planinsic R, Sakai T. Comparison between thrombelastography and thromboelastometry in hyperfibrinolysis detection during adult liver transplantation. Br J Anaesth. 2016;116(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  59. Kalantzi KI, Tsoumani ME, Goudevenos IA, Tselepis AD. Pharmacodynamic properties of antiplatelet agents: current knowledge and future perspectives. Expert Rev Clin Pharmacol. 2012;5(3):319–36. https://doi.org/10.1586/ecp.12.19.

    Article  CAS  PubMed  Google Scholar 

  60. Tóth O, Calatzis A, Penz S, Losonczy H, Siess W. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost. 2006;96(6):781–8.

    PubMed  Google Scholar 

  61. Jámbor C, Weber CF, Gerhardt K, Dietrich W, Spannagl M, Heindl B, Zwissler B. Whole blood multiple electrode aggregometry is a reliable point-of-care test of aspirin-induced platelet dysfunction. Anesth Analg. 2009;109(1):25–31. https://doi.org/10.1213/ane.0b013e3181a27d10.

    Article  CAS  PubMed  Google Scholar 

  62. Penz SM, Bernlochner I, Tóth O, Lorenz R, Calatzis A, Siess W. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry. Thromb J. 2010;8:9. https://doi.org/10.1186/1477-9560-8-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krüger JC, Meves SH, Kara K, Mügge A, Neubauer H. Monitoring ASA and P2Y12-specific platelet inhibition—comparison of conventional (single) and multiple electrode aggregometry. Scand J Clin Lab Invest. 2014;74(7):568–74. https://doi.org/10.3109/00365513.2014.913305.

    Article  CAS  PubMed  Google Scholar 

  64. Sibbing D, Braun S, Morath T, Mehilli J, Vogt W, Schömig A, Kastrati A, von Beckerath N. Platelet reactivity after clopidogrel treatment assessed with point-of-care analysis and early drug-eluting stent thrombosis. J Am Coll Cardiol. 2009;53(10):849–56. https://doi.org/10.1016/j.jacc.2008.11.030.

    Article  CAS  PubMed  Google Scholar 

  65. Sibbing D, Schulz S, Braun S, Morath T, Stegherr J, Mehilli J, Schömig A, von Beckerath N, Kastrati A. Antiplatelet effects of clopidogrel and bleeding in patients undergoing coronary stent placement. J Thromb Haemost. 2010;8(2):250–6. https://doi.org/10.1111/j.1538-7836.2009.03709.x.

    Article  CAS  PubMed  Google Scholar 

  66. Siller-Matula JM, Christ G, Lang IM, Delle-Karth G, Huber K, Jilma B. Multiple electrode aggregometry predicts stent thrombosis better than the vasodilator-stimulated phosphoprotein phosphorylation assay. J Thromb Haemost. 2010;8(2):351–9. https://doi.org/10.1111/j.1538-7836.2009.03699.x.

    Article  CAS  PubMed  Google Scholar 

  67. Rahe-Meyer N, Winterhalter M, Boden A, Froemke C, Piepenbrock S, Calatzis A, Solomon C. Platelet concentrates transfusion in cardiac surgery and platelet function assessment by multiple electrode aggregometry. Acta Anaesthesiol Scand. 2009;53(2):168–75. https://doi.org/10.1111/j.1399-6576.2008.01845.x.

    Article  CAS  PubMed  Google Scholar 

  68. Ranucci M, Baryshnikova E, Soro G, Ballotta A, De Benedetti D, Conti D, Surgical and Clinical Outcome Research (SCORE) Group. Multiple electrode whole-blood aggregometry and bleeding in cardiac surgery patients receiving thienopyridines. Ann Thorac Surg. 2011;91(1):123–9. https://doi.org/10.1016/j.athoracsur.2010.09.022.

    Article  PubMed  Google Scholar 

  69. Petricević M, Biocina B, Konosić S, Burcar I, Sirić F, Mihaljević MZ, Ivancan V, Svetina L, Gasparović H. Definition of acetylsalicylic acid resistance using whole blood impedance aggregometry in patients undergoing coronary artery surgery. Coll Antropol. 2013;37(3):833–9.

    PubMed  Google Scholar 

  70. Schimmer C, Hamouda K, Sommer SP, Özkur M, Hain J, Leyh R. The predictive value of multiple electrode platelet aggregometry (multiplate) in adult cardiac surgery. Thorac Cardiovasc Surg. 2013;61(8):733–43. https://doi.org/10.1055/s-0033-1333659.

    Article  PubMed  Google Scholar 

  71. Ranucci M, Colella D, Baryshnikova E, Di Dedda U, for the Surgical and Clinical Outcome Research (SCORE) Group. Effect of preoperative P2Y12 and thrombin platelet receptor inhibition on bleeding after cardiac surgery. Br J Anaesth. 2014;113(6):970–6. https://doi.org/10.1093/bja/aeu315.

    Article  CAS  PubMed  Google Scholar 

  72. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, Schöchl H. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost. 2011;106(2):322–30. https://doi.org/10.1160/TH11-03-0175.

    Article  CAS  PubMed  Google Scholar 

  73. Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care. 2012;16(5):R204. https://doi.org/10.1186/cc11816.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Nelson MF, Cohen MJ. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9. https://doi.org/10.1097/TA.0b013e318256deab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Petricevic M, Konosic S, Biocina B, Dirkmann D, White A, Mihaljevic MZ, Ivancan V, Konosic L, Svetina L, Görlinger K. Bleeding risk assessment in patients undergoing elective cardiac surgery using ROTEM(®) platelet and Multiplate(®) impedance aggregometry. Anaesthesia. 2016;71(6):636–47.

    Article  CAS  PubMed  Google Scholar 

  76. Chapman MP, Moore EE, Moore HB, Gonzalez E, Morton AP, Silliman CC, Saunaia A, Banerjee A. Early TRAP path-way platelet inhibition predicts coagulopathic hemorrhage in trauma. Shock. 2015;43(6 Suppl 1):33.

    Google Scholar 

  77. Hanke AA, Dellweg C, Kienbaum P, Weber CF, Görlinger K, Rahe-Meyer N. Effects of desmopressin on platelet function under conditions of hypothermia and acidosis: an in vitro study using multiple electrode aggregometry. Anaesthesia. 2010;65(7):688–91. https://doi.org/10.1111/j.1365-2044.2010.06367.x.

    Article  CAS  PubMed  Google Scholar 

  78. Weber CF, Dietrich W, Spannagl M, Hofstetter C, Jámbor C. A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole-blood aggregometry in patients after cardiac surgery. Anesth Analg. 2010;110(3):702–7. https://doi.org/10.1213/ANE.0b013e3181c92a5c.

    Article  CAS  PubMed  Google Scholar 

  79. Weber CF, Görlinger K, Byhahn C, Moritz A, Hanke AA, Zacharowski K, Meininger D. Tranexamic acid partially improves platelet function in patients treated with dual antiplatelet therapy. Eur J Anaesthesiol. 2011;28(1):57–62. https://doi.org/10.1097/EJA.0b013e32834050ab.

    Article  PubMed  Google Scholar 

  80. Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 2008;14(6):648–55. https://doi.org/10.1038/nm1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harr JN, Moore EE, Wohlauer MV, Fragoso M, Gamboni F, Liang X, Banerjee A, Silliman CC. Activated platelets in heparinized shed blood: the “second hit” of acute lung injury in trauma/hemorrhagic shock models. Shock. 2011;36(6):595–603. https://doi.org/10.1097/SHK.0b013e318231ee76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harr JN, Moore EE, Johnson J, Chin TL, Wohlauer MV, Maier R, Cuschieri J, Sperry J, Banerjee A, Silliman CC, Sauaia A. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404. https://doi.org/10.1097/CCM.0b013e31826ab38b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Batchelor JS, Grayson A. A meta-analysis to determine the effect of preinjury antiplatelet agents on mortality in patients with blunt head trauma. Br J Neurosurg. 2013;27(1):12–8. https://doi.org/10.3109/02688697.2012.705361.

    Article  PubMed  Google Scholar 

  84. Hallet J, Lauzier F, Mailloux O, Trottier V, Archambault P, Zarychanski R, Turgeon AF. The use of higher platelet: RBC transfusion ratio in the acute phase of trauma resuscitation: a systematic review. Crit Care Med. 2013;41(12):2800–11. https://doi.org/10.1097/CCM.0b013e31829a6ecb.

    Article  PubMed  Google Scholar 

  85. Briggs A, Gates JD, Kaufman RM, Calahan C, Gormley WB, Havens JM. Platelet dysfunction and platelet transfusion in traumatic brain injury. J Surg Res. 2015 Feb;193(2):802–6. https://doi.org/10.1016/j.jss.2014.08.016.

    Article  CAS  PubMed  Google Scholar 

  86. Inaba K, Branco BC, Rhee P, Blackbourne LH, Holcomb JB, Teixeira PG, Shulman I, Nelson J, Demetriades D. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J Am Coll Surg. 2010;210(6):957–65. https://doi.org/10.1016/j.jamcollsurg.2010.01.031.

    Article  PubMed  Google Scholar 

  87. Borgman MA, Spinella PC, Holcomb JB, Blackbourne LH, Wade CE, Lefering R, Bouillon B, Maegele M. The effect of FFP: RBC ratio on morbidity and mortality in trauma patients based on transfusion prediction score. Vox Sang. 2011;101(1):44–54. https://doi.org/10.1111/j.1423-0410.2011.01466.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mitra B, Cameron PA, Gruen RL. Aggressive fresh frozen plasma (FFP) with massive blood transfusion in the absence of acute traumatic coagulopathy. Injury. 2012;43(1):33–7. https://doi.org/10.1016/j.injury.2011.10.011.

    Article  PubMed  Google Scholar 

  89. Holcomb JB, Gumbert S. Potential value of protocols in substantially bleeding trauma patients. Curr Opin Anaesthesiol. 2013;26(2):215–20. https://doi.org/10.1097/ACO.0b013e32835e8c9b.

    Article  PubMed  Google Scholar 

  90. Theusinger OM, Stein P, Spahn DR. Transfusion strategy in multiple trauma patients. Curr Opin Crit Care. 2014;20(6):646–55. https://doi.org/10.1097/MCC.0000000000000152.

    Article  PubMed  Google Scholar 

  91. Wanderer JP, Nathan N. Massive transfusion protocols: when to turn on, and off, the fire hose. Anesth Analg. 2017;125(6):1827.

    Article  PubMed  Google Scholar 

  92. Brockamp T, Nienaber U, Mutschler M, Wafaisade A, Peiniger S, Lefering R, Bouillon B, Maegele M, TraumaRegister DGU. Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU. Crit Care. 2012;16(4):R129. https://doi.org/10.1186/cc11432.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Maegele M, Brockamp T, Nienaber U, Probst C, Schoechl H, Görlinger K, Spinella P. Predictive models and algorithms for the need of transfusion including massive transfusion in severely injured patients. Transfus Med Hemother. 2012;39(2):85–97.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mutschler M, Brockamp T, Wafaisade A, Lipensky A, Probst C, Bouillon B, Maegele M. ‘Time to TASH’: how long does complete score calculation take to assess major trauma hemorrhage? Transfus Med. 2014;24(1):58–9. https://doi.org/10.1111/tme.12089.

    Article  PubMed  Google Scholar 

  95. Leemann H, Lustenberger T, Talving P, Kobayashi L, Bukur M, Brenni M, Brüesch M, Spahn DR, Keel MJ. The role of rotation thromboelastometry in early prediction of massive transfusion. J Trauma. 2010;69(6):1403–8. https://doi.org/10.1097/TA.0b013e3181faaa25. discussion 1408–9.

    Article  PubMed  Google Scholar 

  96. Schöchl H, Cotton B, Inaba K, Nienaber U, Fischer H, Voelckel W, Solomon C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15(6):R265. https://doi.org/10.1186/cc10539.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, Strasak A, Mittermayr M. Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’. Br J Anaesth. 2011;107(3):378–87. https://doi.org/10.1093/bja/aer158.

    Article  CAS  PubMed  Google Scholar 

  98. Hagemo JS, Christiaans SC, Stanworth SJ, Brohi K, Johansson PI, Goslings JC, Naess PA, Gaarder C. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study. Crit Care. 2015;19:97.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kelly JM, Rizoli S, Veigas P, Hollands S, Min A. Using rotational thromboelastometry clot firmness at 5 minutes (ROTEM® EXTEM A5) to predict massive transfusion and in-hospital mortality in trauma: a retrospective analysis of 1146 patients. Anaesthesia. 2018;73(9):1103–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stettler GR, Moore EE, Moore HB, Nunns GR, Silliman CC, Banerjee A, Sauaia A. Redefining postinjury fibrinolysis phenotypes using two viscoelastic assays. J Trauma Acute Care Surg. 2019;86(4):679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Duque P, Mora L, Levy JH, Schöchl H. Pathophysiological response to trauma-induced coagulopathy: a comprehensive review. Anesth Analg. 2019. https://doi.org/10.1213/ANE.0000000000004478. [Epub ahead of print].

  102. Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost. 2018;16(4):652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brill JB, Badiee J, Zander AL, Wallace JD, Lewis PR, Sise MJ, Bansal V, Shackford SR. The rate of deep vein thrombosis doubles in trauma patients with hypercoagulable thromboelastography. J Trauma Acute Care Surg. 2017;83(3):413–9.

    Article  PubMed  Google Scholar 

  104. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, El-Sayed H, Gogichaishvili T, Gupta S, Herrera J, Hunt B, Iribhogbe P, Izurieta M, Khamis H, Komolafe E, Marrero MA, Mejía-Mantilla J, Miranda J, Morales C, Olaomi O, Olldashi F, Perel P, Peto R, Ramana PV, Ravi RR, Yutthakasemsunt S, CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. https://doi.org/10.1016/S0140-6736(10)60835-5.

    Article  CAS  PubMed  Google Scholar 

  105. Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt BJ, Morales C, Perel P, Prieto-Merino D, Woolley T, CRASH-2 collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101, 1101.e1–2. https://doi.org/10.1016/S0140-6736(11)60278-X.

    Article  CAS  PubMed  Google Scholar 

  106. Gayet-Ageron A, Prieto-Merino D, Ker K, Shakur H, Ageron FX, Roberts I, Antifibrinolytic Trials Collaboration. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients. Lancet. 2018;391(10116):125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dimitrova-Karamfilova A, Patokova Y, Solarova T, Petrova I, Natchev G. Rotation thromboelastography for assessment of hypercoagulation and thrombosis in patients with cardiovascular diseases. J Life Sci. 2012;6:28–35.

    Google Scholar 

  108. Hincker A, Feit J, Sladen RN, Wagener G. Rotational thromboelastometry predicts thromboembolic complications after major non-cardiac surgery. Crit Care. 2014;18(5):549. https://doi.org/10.1186/s13054-014-0549-2.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Snyder TA, Litwak KN, Tsukui H, Akimoto T, Kihara S, Yamazaki K, Wagner WR. Leukocyte-platelet aggregates and monocyte tissue factor expression in bovines implanted with ventricular assist devices. Artif Organs. 2007;31(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  110. Hartmann M, Ozlügedik S, Peters J. Thiopental inhibits lipopolysaccharide-induced tissue factor expression. Anesth Analg. 2009;109(1):109–13. https://doi.org/10.1213/ane.0b013e3181a27cfb.

    Article  CAS  PubMed  Google Scholar 

  111. Schulte am Esch J 2nd, Akyildiz A, Tustas RY, Ganschow R, Schmelzle M, Krieg A, Robson SC, Topp SA, Rogiers X, Knoefel WT, Fischer L. ADP-dependent platelet function prior to and in the early course of pediatric liver transplantation and persisting thrombocytopenia are positively correlated with ischemia/reperfusion injury. Transpl Int. 2010;23(7):745–52. https://doi.org/10.1111/j.1432-2277.2010.01054.x.

    Article  CAS  PubMed  Google Scholar 

  112. Di Santo A, Amore C, Dell'Elba G, Manarini S, Evangelista V. Glycogen synthase kinase-3 negatively regulates tissue factor expression in monocytes interacting with activated platelets. J Thromb Haemost. 2011;9(5):1029–39. https://doi.org/10.1111/j.1538-7836.2011.04236.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rao LV, Pendurthi UR. Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost. 2012;10(11):2242–53. https://doi.org/10.1111/jth.12003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost. 2013;11(Suppl 1):277–84. https://doi.org/10.1111/jth.12228.

    Article  PubMed  Google Scholar 

  115. Sucker C, Paniczek S, Scharf RE, Litmathe J, Hartmann M. Rotation thromboelastography for the detection and characterization of lipoteichoid acid-induced activation of haemostasis in an in vitro sepsis model. Perfusion. 2013;28(2):146–51. https://doi.org/10.1177/0267659112464712.

    Article  CAS  PubMed  Google Scholar 

  116. Schöchl H, Solomon C, Schulz A, Voelckel W, Hanke A, Van Griensven M, Redl H, Bahrami S. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17(3–4):266–72. https://doi.org/10.2119/molmed.2010.00159.

    Article  CAS  PubMed  Google Scholar 

  117. Semeraro F, Ammollo CT, Semeraro N, Colucci M. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica. 2009;94(6):819–26. https://doi.org/10.3324/haematol.2008.000042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Meltzer ME, Lisman T, de Groot PG, Meijers JC, le Cessie S, Doggen CJ, Rosendaal FR. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113–21. https://doi.org/10.1182/blood-2010-02-267740.

    Article  CAS  PubMed  Google Scholar 

  119. Levi M. Coagulation in sepsis. Int J Intensive Care. 2013;20(3):77–81.

    Google Scholar 

  120. Mosnier LO. Platelet factor 4 inhibits thrombomodulin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) by thrombin. J Biol Chem. 2011;286(1):502–10. https://doi.org/10.1074/jbc.M110.147959.

    Article  CAS  PubMed  Google Scholar 

  121. Ozolina A, Strike E, Jaunalksne I, Serova J, Romanova T, Zake LN, Sabelnikovs O, Vanags I. Influence of PAI-1 gene promoter-675 (4G/5G) polymorphism on fibrinolytic activity after cardiac surgery employing cardiopulmonary bypass. Medicina (Kaunas). 2012;48(10):515–20.

    Google Scholar 

  122. Koyama K, Madoiwa S, Nunomiya S, Koinuma T, Wada M, Sakata A, Ohmori T, Mimuro J, Sakata Y. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18(1):R13. https://doi.org/10.1186/cc13190.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Adamzik M, Langemeier T, Frey UH, Görlinger K, Saner F, Eggebrecht H, Peters J, Hartmann M. Comparison of thrombelastometry with simplified acute physiology score II and sequential organ failure assessment scores for the prediction of 30-day survival: a cohort study. Shock. 2011;35(4):339–42. https://doi.org/10.1097/SHK.0b013e318204bff6.

    Article  PubMed  Google Scholar 

  124. Schmitt FCF, Manolov V, Morgenstern J, Fleming T, Heitmeier S, Uhle F, Al-Saeedi M, Hackert T, Bruckner T, Schöchl H, Weigand MA, Hofer S, Brenner T. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study. Ann Intensive Care. 2019;9:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, Stringham JR, Sauaia A, Silliman CC, Banerjee A. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. https://doi.org/10.1097/TA.0b013e3182aa9c9f. discussion 967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, Sauaia A, Cotton BA. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Moore HB, Moore EE, Huebner BR, Dzieciatkowska M, Stettler GR, Nunns GR, Lawson PJ, Ghasabyan A, Chandler J, Banerjee A, Silliman C, Sauaia A, Hansen KC. Fibrinolysis shutdown is associated with a fivefold increase in mortality in trauma patients lacking hypersensitivity to tissue plasminogen activator. J Trauma Acute Care Surg. 2017;83(6):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leeper CM, Neal MD, McKenna C, Sperry JL, Gaines BA. Abnormalities in fibrinolysis at the time of admission are associated with deep vein thrombosis, mortality, and disability in a pediatric trauma population. J Trauma Acute Care Surg. 2017;82(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  130. Moore HB, Moore EE, Huebner BR, Stettler GR, Nunns GR, Einersen PM, Silliman CC, Sauaia A. Tranexamic acid is associated with increased mortality in patients with physiological fibrinolysis. J Surg Res. 2017;220:438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moore EE, Moore HB, Gonzalez E, Chapman MP, Hansen KC, Sauaia A, Silliman CC, Banerjee A. Postinjury fibrinolysis shutdown: rationale for selective tranexamic acid. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S65–9.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chapman MP, Moore EE, Moore HB, Gonzalez E, Morton AP, Chandler J, Fleming CD, Ghasabyan A, Silliman CC, Banerjee A, Sauaia A. The “Death Diamond”: rapid thrombelastography identifies lethal hyperfibrinolysis. J Trauma Acute Care Surg. 2015;79(6):925–9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dirkmann D, Görlinger K, Gisbertz C, Dusse F, Peters J. Factor XIII and tranexamic acid but not recombinant factor VIIa attenuate tissue plasminogen activator-induced hyperfibrinolysis in human whole blood. Anesth Analg. 2012;114(6):1182–8. https://doi.org/10.1213/ANE.0b013e31823b6683.

    Article  CAS  PubMed  Google Scholar 

  134. Katori N, Tanaka KA, Szlam F, Levy JH. The effects of platelet count on clot retraction and tissue plasminogen activator-induced fibrinolysis on thrombelastography. Anesth Analg. 2005;100(6):1781–5.

    Article  CAS  PubMed  Google Scholar 

  135. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518. https://doi.org/10.1186/s13054-014-0518-9.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Levrat A, Gros A, Rugeri L, Inaba K, Floccard B, Negrier C, David JS. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth. 2008;100(6):792–7. https://doi.org/10.1093/bja/aen083.

    Article  CAS  PubMed  Google Scholar 

  137. Schöchl H, Frietsch T, Pavelka M, Jámbor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31. https://doi.org/10.1097/TA.0b013e31818b2483.

    Article  PubMed  Google Scholar 

  138. Theusinger OM, Wanner GA, Emmert MY, Billeter A, Eismon J, Seifert B, Simmen HP, Spahn DR, Baulig W. Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg. 2011;113(5):1003–12. https://doi.org/10.1213/ANE.0b013e31822e183f.

    Article  PubMed  Google Scholar 

  139. Cunningham AJ, Condron M, Schreiber MA, Azarow K, Hamilton NA, Downie K, Long WB, Maxwell BG, Jafri MA. Rotational thromboelastometry (ROTEM) predicts transfusion and disability in pediatric trauma. J Trauma Acute Care Surg. 2020;88(1):134–40.

    Article  PubMed  Google Scholar 

  140. Khan S, Brohi K, Chana M, Raza I, Stanworth S, Gaarder C, Davenport R. International Trauma Research Network (INTRN). Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg. 2014;76(3):561–7. https://doi.org/10.1097/TA.0000000000000146. discussion 567–8.

    Article  CAS  PubMed  Google Scholar 

  141. Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27(2):212–8. https://doi.org/10.1097/ACO.0000000000000051.

    Article  PubMed  Google Scholar 

  142. Maegele M, Schöchl H, Menovsky T, Maréchal H, Marklund N, Buki A, Stanworth S. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017;16(8):630–47.

    Article  PubMed  Google Scholar 

  143. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A, Büki A, Chesnut RM, Citerio G, Coburn M, Cooper DJ, Crowder AT, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier JP, Duhaime AC, Ercole A, van Essen TA, Feigin VL, Gao G, Giacino J, Gonzalez-Lara LE, Gruen RL, Gupta D, Hartings JA, Hill S, Jiang JY, Ketharanathan N, Kompanje EJO, Lanyon L, Laureys S, Lecky F, Levin H, Lingsma HF, Maegele M, Majdan M, Manley G, Marsteller J, Mascia L, McFadyen C, Mondello S, Newcombe V, Palotie A, Parizel PM, Peul W, Piercy J, Polinder S, Puybasset L, Rasmussen TE, Rossaint R, Smielewski P, Söderberg J, Stanworth SJ, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Synnot A, Te Ao B, Tenovuo O, Theadom A, Tibboel D, Videtta W, Wang KKW, Williams WH, Wilson L, Yaffe K, InTBIR Participants and Investigators. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048.

    Article  Google Scholar 

  144. Goerlinger K, Kiss G, Dirkmann D, Dusse F, Hanke A, Arvieux CC, Peters J. ROTEM-based algorithm for management of acute haemorrhage and coagulation disorders in trauma patients. Eur J Anaesthesiol. 2006;23(Suppl 37):S84–5.

    Article  Google Scholar 

  145. Waydhas C, Görlinger K. Coagulation management in multiple trauma. Unfallchirurg. 2009;112(11):942–50. https://doi.org/10.1007/s00113-009-1681-3.

    Article  CAS  PubMed  Google Scholar 

  146. Görlinger K, Dirkmann D, Weber CF, Rahe-Meyer N, Hanke AA. Algorithms for transfusion and coagulation management in massive haemorrhage. Anästh Intensivmed. 2011;52(2):145–59.

    Google Scholar 

  147. Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20:15. https://doi.org/10.1186/1757-7241-20-15.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kozek-Langenecker SA. Coagulation and transfusion in the postoperative bleeding patient. Curr Opin Crit Care. 2014;20(4):460–6. https://doi.org/10.1097/MCC.0000000000000109.

    Article  PubMed  Google Scholar 

  149. Inaba K, Rizoli S, Veigas PV, Callum J, Davenport R, Hess J, Maegele M, Viscoelastic Testing in Trauma Consensus Panel. 2014 consensus conference on viscoelastic test-based transfusion guidelines for early trauma resuscitation: report of the panel. J Trauma Acute Care Surg. 2015;78(6):1220–9.

    Article  PubMed  Google Scholar 

  150. Baksaas-Aasen K, Van Dieren S, Balvers K, Juffermans NP, Næss PA, Rourke C, Eaglestone S, Ostrowski SR, Stensballe J, Stanworth S, Maegele M, Goslings JC, Johansson PI, Brohi K, Gaarder C, TACTIC/INTRN Collaborators. Data-driven development of ROTEM and TEG algorithms for the management of trauma hemorrhage: a prospective observational multicenter study. Ann Surg. 2019;270(6):1178–85.

    Article  PubMed  Google Scholar 

  151. Görlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thielmann M, Jakob H, Peters J. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115(6):1179–91. https://doi.org/10.1097/ALN.0b013e31823497dd.

    Article  CAS  PubMed  Google Scholar 

  152. Weber CF, Görlinger K, Meininger D, Herrmann E, Bingold T, Moritz A, Cohn LH, Zacharowski K. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117(3):531–47.

    Article  PubMed  Google Scholar 

  153. Görlinger K, Dirkmann D, Hanke AA. Potential value of transfusion protocols in cardiac surgery. Curr Opin Anaesthesiol. 2013;26(2):230–43. https://doi.org/10.1097/ACO.0b013e32835ddca6.

    Article  CAS  PubMed  Google Scholar 

  154. Deppe AC, Weber C, Zimmermann J, Kuhn EW, Slottosch I, Liakopoulos OJ, Choi YH, Wahlers T. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: a meta-analysis of 8332 patients. J Surg Res. 2016;203(2):424–33.

    Article  PubMed  Google Scholar 

  155. Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev. 2016;(8):CD007871.

    Google Scholar 

  156. Haensig M, Kempfert J, Kempfert PM, Girdauskas E, Borger MA, Lehmann S. Thrombelastometry guided blood-component therapy after cardiac surgery: a randomized study. BMC Anesthesiol. 2019;19(1):201.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Schöchl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55. https://doi.org/10.1186/cc8948.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Schöchl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, Arndt C, Hanke A, Voelckel W, Solomon C. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83. https://doi.org/10.1186/cc10078.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Görlinger K, Fries D, Dirkmann D, Weber CF, Hanke AA, Schöchl H. Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therapy. Transfus Med Hemother. 2012;39(2):104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schöchl H, Schlimp CJ, Voelckel W. Potential value of pharmacological protocols in trauma. Curr Opin Anaesthesiol. 2013;26(2):221–9. https://doi.org/10.1097/ACO.0b013e32835cca92.

    Article  CAS  PubMed  Google Scholar 

  161. Lendemans S, Düsing H, Assmuth S, Hußmann B, Wafaisade A, Lefering R, Görlinger K, Marzi I. Die Einführung eines spezifischen Gerinnungsprotokolls (Point of Care) verbessert das Outcome beim blutenden Schwerverletzten: eine Subgruppenanalyse von 172 Patienten unter Beteiligung des Traumaregisters DGU (gefördert durch die DIVI). Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2013). Berlin, 22–25.10.2013. Düsseldorf: German Medical Science GMS Publishing House; published 23 Oct 2013. DocWI50-561. https://doi.org/10.3205/13dkou367.

  162. Haas T, Görlinger K, Grassetto A, Agostini V, Simioni P, Nardi G, Ranucci M. Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Minerva Anestesiol. 2014;80(12):1320–35.

    CAS  PubMed  Google Scholar 

  163. Stein P, Kaserer A, Sprengel K, Wanner GA, Seifert B, Theusinger OM, Spahn DR. Change of transfusion and treatment paradigm in major trauma patients. Anaesthesia. 2017;72(11):1317–26.

    Article  CAS  PubMed  Google Scholar 

  164. Prat NJ, Meyer AD, Ingalls NK, Trichereau J, DuBose JJ, Cap AP. Rotational thromboelastometry significantly optimizes transfusion practices for damage control resuscitation in combat casualties. J Trauma Acute Care Surg. 2017;83(3):373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Deng Q, Hao F, Wang Y, Guo C. Rotation thromboelastometry (ROTEM) enables improved outcomes in the pediatric trauma population. J Int Med Res. 2018;46(12):5195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A, Wohlauer MV, Barnett CC, Bensard DD, Biffl WL, Burlew CC, Johnson JL, Pieracci FM, Jurkovich GJ, Banerjee A, Silliman CC, Sauaia A. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263(6):1051–9.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Innerhofer P, Fries D, Mittermayr M, Innerhofer N, von Langen D, Hell T, Gruber G, Schmid S, Friesenecker B, Lorenz IH, Ströhle M, Rastner V, Trübsbach S, Raab H, Treml B, Wally D, Treichl B, Mayr A, Kranewitter C, Oswald E. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017;4(6):e258–71.

    Article  PubMed  Google Scholar 

  168. Grottke O, Rossaint R. Coagulation factor concentrates and point-of-care coagulation monitoring: both might be essential for optimal treatment of trauma-induced coagulopathy. Lancet Haematol. 2017;4(6):e246–7.

    Article  PubMed  Google Scholar 

  169. Rodrigues RR, Oliveira R, Lucena L, Paiva H, Cordeiro V, Carmona MJ, Auler JOC, Utiyama EM, Gorlinger K, Spahn D, Schöchl H. STATA-strategy of transfusion in trauma patients: a randomized trial. J Clin Trials. 2016;6:5.

    Google Scholar 

  170. Baksaas-Aasen K, Gall L, Eaglestone S, Rourke C, Juffermans NP, Goslings JC, Naess PA, van Dieren S, Ostrowski SR, Stensballe J, Maegele M, Stanworth SJ, Gaarder C, Brohi K, Johansson PI. iTACTIC - implementing Treatment Algorithms for the Correction of Trauma-Induced Coagulopathy: study protocol for a multicentre, randomised controlled trial. Trials. 2017;18(1):486.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lier H, Vorweg M, Hanke A, Görlinger K. Thromboelastometry guided therapy of severe bleeding. Essener Runde algorithm. Hamostaseologie. 2013;33(1):51–61. https://doi.org/10.5482/HAMO-12-05-0011.

    Article  CAS  PubMed  Google Scholar 

  172. Kutcher ME, Cripps MW, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Redick BJ, Nelson MF, Cohen MJ. Criteria for empiric treatment of hyperfibrinolysis after trauma. J Trauma Acute Care Surg. 2012;73(1):87–93. https://doi.org/10.1097/TA.0b013e3182598c70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schlimp CJ, Voelckel W, Inaba K, Maegele M, Ponschab M, Schöchl H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care. 2013;17(4):R137. https://doi.org/10.1186/cc12816.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Leeper CM, Neal MD, McKenna CJ, Gaines BA. Trending fibrinolytic dysregulation: fibrinolysis shutdown in the days after injury is associated with poor outcome in severely injured children. Ann Surg. 2017;266(3):508–15.

    Article  PubMed  Google Scholar 

  175. Moore HB, Moore EE, Neal MD, Sheppard FR, Kornblith LZ, Draxler DF, Walsh M, Medcalf RL, Cohen MJ, Cotton BA, Thomas SG, Leeper CM, Gaines BA, Sauaia A. Fibrinolysis shutdown in trauma: historical review and clinical implications. Anesth Analg. 2019;129(3):762–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, Livingstone AS, Namias N, Schulman CI, Proctor KG. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76(6):1373–8.

    Article  CAS  PubMed  Google Scholar 

  177. Harvin JA, Peirce CA, Mims MM, Hudson JA, Podbielski JM, Wade CE, Holcomb JB, Cotton BA. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78(5):905–9; discussion 909–11.

    Article  PubMed  Google Scholar 

  178. Ramirez RJ, Spinella PC, Bochicchio GV. Tranexamic acid update in trauma. Crit Care Clin. 2017;33(1):85–99.

    Article  PubMed  Google Scholar 

  179. Dries DJ. Tranexamic acid: is it about time? Lancet. 2018;391(10116):97–8.

    Article  PubMed  Google Scholar 

  180. CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–23.

    Article  Google Scholar 

  181. Myers SP, Kutcher ME, Rosengart MR, Sperry JL, Peitzman AB, Brown JB, Neal MD. Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism. J Trauma Acute Care Surg. 2019;86(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  182. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Innerhofer P. Effects of colloid and crystalloid solutions on endogenous activation of fibrinolysis and resistance of polymerized fibrin to recombinant tissue plasminogen activator added ex vivo. Br J Anaesth. 2008;100(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  183. Velik-Salchner C, Haas T, Innerhofer P, Streif W, Nussbaumer W, Klingler A, Klima G, Martinowitz U, Fries D. The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost. 2007;5(5):1019–25.

    Article  CAS  PubMed  Google Scholar 

  184. Schöchl H, Solomon C, Traintinger S, Nienaber U, Tacacs-Tolnai A, Windhofer C, Bahrami S, Voelckel W. Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injury. J Neurotrauma. 2011;28(10):2033–41. https://doi.org/10.1089/neu.2010.1744.

    Article  PubMed  Google Scholar 

  185. Rahe-Meyer N, Solomon C, Winterhalter M, Piepenbrock S, Tanaka K, Haverich A, Pichlmaier M. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J Thorac Cardiovasc Surg. 2009;138(3):694–702. https://doi.org/10.1016/j.jtcvs.2008.11.065.

    Article  PubMed  Google Scholar 

  186. Rahe-Meyer N, Solomon C, Hanke A, Schmidt DS, Knoerzer D, Hochleitner G, Sørensen B, Hagl C, Pichlmaier M. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology. 2013;118(1):40–50. https://doi.org/10.1097/ALN.0b013e3182715d4d.

    Article  CAS  PubMed  Google Scholar 

  187. Tanaka KA, Bader SO, Görlinger K. Novel approaches in management of perioperative coagulopathy. Curr Opin Anaesthesiol. 2014;27(1):72–80. https://doi.org/10.1097/ACO.0000000000000025.

    Article  CAS  PubMed  Google Scholar 

  188. Lee SH, Lee SM, Kim CS, Cho HS, Lee JH, Lee CH, Kim E, Sung K, Solomon C, Kang J, Kim YR. Fibrinogen recovery and changes in fibrin-based clot firmness after cryoprecipitate administration in patients undergoing aortic surgery involving deep hypothermic circulatory arrest. Transfusion. 2014;54(5):1379–87.

    Article  CAS  PubMed  Google Scholar 

  189. Galas FR, de Almeida JP, Fukushima JT, Vincent JL, Osawa EA, Zeferino S, Câmara L, Guimarães VA, Jatene MB, Hajjar LA. Hemostatic effects of fibrinogen concentrate compared with cryoprecipitate in children after cardiac surgery: a randomized pilot trial. J Thorac Cardiovasc Surg. 2014;148(4):1647–55.

    Article  CAS  PubMed  Google Scholar 

  190. Ranucci M, Baryshnikova E, Crapelli GB, Rahe-Meyer N, Menicanti L, Frigiola A, Surgical Clinical Outcome REsearch (SCORE) Group. Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery. J Am Heart Assoc. 2015;4(6):e002066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Juffermans NP, Wirtz MR, Balvers K, Baksaas-Aasen K, van Dieren S, Gaarder C, Naess PA, Stanworth S, Johansson PI, Stensballe J, Maegele M, Goslings JC, Brohi K, TACTIC Partners. Towards patient-specific management of trauma hemorrhage: the effect of resuscitation therapy on parameters of thromboelastometry. J Thromb Haemost. 2019;17(3):441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Greene LA, Chen S, Seery C, Imahiyerobo AM, Bussel JB. Beyond the platelet count: immature platelet fraction and thromboelastometry correlate with bleeding in patients with immune thrombocytopenia. Br J Haematol. 2014;166(4):592–600. https://doi.org/10.1111/bjh.12929.

    Article  PubMed  Google Scholar 

  193. Flisberg P, Rundgren M, Engström M. The effects of platelet transfusions evaluated using rotational thromboelastometry. Anesth Analg. 2009;108(5):1430–2. https://doi.org/10.1213/ane.0b013e31819bccb7.

    Article  PubMed  Google Scholar 

  194. Tripodi A, Primignani M, Chantarangkul V, Lemma L, Jovani M, Rebulla P, Mannucci PM. Global hemostasis tests in patients with cirrhosis before and after prophylactic platelet transfusion. Liver Int. 2013;33(3):362–7. https://doi.org/10.1111/liv.12038.

    Article  PubMed  Google Scholar 

  195. Konkle BA. Acquired disorders of platelet function. Hematology Am Soc Hematol Educ Program. 2011;2011:391–6. https://doi.org/10.1182/asheducation-2011.1.391.

    Article  PubMed  Google Scholar 

  196. Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost. 2012;38(8):865–83. https://doi.org/10.1055/s-0032-1328881.

    Article  CAS  PubMed  Google Scholar 

  197. Koch CD, Wockenfus AM, Miller RS, Tolan NV, Chen D, Pruthi RK, Jaffe AS, Karon BS. Intra-assay precision, inter-assay precision, and reliability of five platelet function methods used to monitor the effect of aspirin and clopidogrel on platelet function. Clin Chem. 2013;59(10 Suppl):A152.

    Google Scholar 

  198. Furay EJ, Daley MJ, Satarasinghe P, Lara S, Aydelotte JD, Teixeira PG, Coopwood TB, Ali S, Brown CV. Desmopressin is a transfusion sparing option to reverse platelet dysfunction in patients with severe traumatic brain injury. J Trauma Acute Care Surg. 2020;88(1):80–6.

    Article  PubMed  Google Scholar 

  199. Taune V, Wallén H, Ågren A, Gryfelt G, Sjövik C, Wintler AM, Malmström RE, Wikman A, Skeppholm M. Whole blood coagulation assays ROTEM and T-TAS to monitor dabigatran treatment. Thromb Res. 2017;153:76–82.

    Article  CAS  PubMed  Google Scholar 

  200. Comuth WJ, Henriksen LØ, van de Kerkhof D, Husted SE, Kristensen SD, de Maat MPM, Münster AB. Comprehensive characteristics of the anticoagulant activity of dabigatran in relation to its plasma concentration. Thromb Res. 2018;164:32–9.

    Article  CAS  PubMed  Google Scholar 

  201. Schmidt DE, Holmström M, Majeed A, Näslin D, Wallén H, Ågren A. Detection of elevated INR by thromboelastometry and thromboelastography in warfarin treated patients and healthy controls. Thromb Res. 2015;135(5):1007–11.

    Article  CAS  PubMed  Google Scholar 

  202. Blasi A, Muñoz G, de Soto I, Mellado R, Taura P, Rios J, Balust J, Beltran J. Reliability of thromboelastometry for detecting the safe coagulation threshold in patients taking acenocoumarol after elective heart valve replacement. Thromb Res. 2015;136(3):669–72.

    Article  CAS  PubMed  Google Scholar 

  203. Inaba K, Branco BC, Rhee P, Holcomb JB, Blackbourne LH, Shulman I, Nelson J, Demetriades D. Impact of ABO-identical vs ABO-compatible nonidentical plasma transfusion in trauma patients. Arch Surg. 2010;145(9):899–906. https://doi.org/10.1001/archsurg.2010.175.

    Article  PubMed  Google Scholar 

  204. Hickey M, Gatien M, Taljaard M, Aujnarain A, Giulivi A, Perry JJ. Outcomes of urgent warfarin reversal with frozen plasma versus prothrombin complex concentrate in the emergency department. Circulation. 2013;128(4):360–4. https://doi.org/10.1161/CIRCULATIONAHA.113.001875.

    Article  CAS  PubMed  Google Scholar 

  205. Sarode R, Milling TJ Jr, Refaai MA, Mangione A, Schneider A, Durn BL, Goldstein JN. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128(11):1234–43. https://doi.org/10.1161/CIRCULATIONAHA.113.002283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Innerhofer P, Westermann I, Tauber H, Breitkopf R, Fries D, Kastenberger T, El Attal R, Strasak A, Mittermayr M. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury. 2013;44(2):209–16. https://doi.org/10.1016/j.injury.2012.08.047.

    Article  PubMed  Google Scholar 

  207. Hanke AA, Joch C, Görlinger K. Long-term safety and efficacy of a pasteurized nanofiltrated prothrombin complex concentrate (Beriplex P/N): a pharmacovigilance study. Br J Anaesth. 2013;110(5):764–72. https://doi.org/10.1093/bja/aes501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tazarourte K, Riou B, Tremey B, Samama CM, Vicaut E, Vigué B, EPAHK Study Group. Guideline-concordant administration of prothrombin complex concentrate and vitamin K is associated with decreased mortality in patients with severe bleeding under vitamin K antagonist treatment (EPAHK study). Crit Care. 2014;18(2):R81. https://doi.org/10.1186/cc13843.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Zeeshan M, Hamidi M, Feinstein AJ, Gries L, Jehan F, Sakran J, Northcutt A, OʼKeeffe T, Kulvatunyou N, Joseph B. Four-factor prothrombin complex concentrate is associated with improved survival in trauma-related hemorrhage: a nationwide propensity-matched analysis. J Trauma Acute Care Surg. 2019;87(2):274–81.

    Article  CAS  PubMed  Google Scholar 

  210. Grottke O, van Ryn J, Spronk HM, Rossaint R. Prothrombin complex concentrates and a specific antidote to dabigatran are effective ex-vivo in reversing the effects of dabigatran in an anticoagulation/liver trauma experimental model. Crit Care. 2014;18(1):R27. https://doi.org/10.1186/cc13717.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Henskens YMC, Gulpen AJW, van Oerle R, Wetzels R, Verhezen P, Spronk H, Schalla S, Crijns HJ, Ten Cate H, Ten Cate-Hoek A. Detecting clinically relevant rivaroxaban or dabigatran levels by routine coagulation tests or thromboelastography in a cohort of patients with atrial fibrillation. Thromb J. 2018;16:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Adelmann D, Wiegele M, Wohlgemuth RK, Koch S, Frantal S, Quehenberger P, Scharbert G, Kozek-Langenecker S, Schaden E. Measuring the activity of apixaban and rivaroxaban with rotational thrombelastometry. Thromb Res. 2014;134(4):918–23.

    Article  CAS  PubMed  Google Scholar 

  213. Eller T, Busse J, Dittrich M, Flieder T, Alban S, Knabbe C, Birschmann I. Dabigatran, rivaroxaban, apixaban, argatroban and fondaparinux and their effects on coagulation POC and platelet function tests. Clin Chem Lab Med. 2014;52(6):835–44. https://doi.org/10.1515/cclm-2013-0936.

    Article  CAS  PubMed  Google Scholar 

  214. Levi M, Levy JH, Andersen HF, Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800. https://doi.org/10.1056/NEJMoa1006221.

    Article  CAS  PubMed  Google Scholar 

  215. Simpson E, Lin Y, Stanworth S, Birchall J, Doree C, Hyde C. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev. 2012;3:CD005011. https://doi.org/10.1002/14651858.CD005011.pub4.

    Article  Google Scholar 

  216. Lau P, Ong V, Tan WT, Koh PL, Hartman M. Use of activated recombinant factor VII in severe bleeding—evidence for efficacy and safety in trauma, postpartum hemorrhage, cardiac surgery, and gastrointestinal bleeding. Transfus Med Hemother. 2012;39(2):139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Smith I, Rapchuk I, Macdonald C, Thomson B, Pearse B. Management of exsanguination during laser lead extraction. J Cardiothorac Vasc Anesth. 2014;28(6):1575–9.

    Article  PubMed  Google Scholar 

  218. Mittermayr M, Velik-Salchner C, Stalzer B, Margreiter J, Klingler A, Streif W, Fries D, Innerhofer P. Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg. 2009;108(3):743–50. https://doi.org/10.1213/ane.0b013e31818657a3.

    Article  CAS  PubMed  Google Scholar 

  219. Smith AF, Choi SW. Major trauma and the need for massive transfusion. Anaesthesia. 2017;72(11):1299–301.

    Article  CAS  PubMed  Google Scholar 

  220. Nienaber U, Innerhofer P, Westermann I, Schöchl H, Attal R, Breitkopf R, Maegele M. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury. 2011;42(7):697–701. https://doi.org/10.1016/j.injury.2010.12.015.

    Article  PubMed  Google Scholar 

  221. Sibbing D, Steinhubl SR, Schulz S, Schömig A, Kastrati A. Platelet aggregation and its association with stent thrombosis and bleeding in clopidogrel-treated patients: initial evidence of a therapeutic window. J Am Coll Cardiol. 2010;56(4):317–8. https://doi.org/10.1016/j.jacc.2010.03.048.

    Article  PubMed  Google Scholar 

  222. Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, Stone GW, Curzen N, Geisler T, Ten Berg J, Kirtane A, Siller-Matula J, Mahla E, Becker RC, Bhatt DL, Waksman R, Rao SV, Alexopoulos D, Marcucci R, Reny JL, Trenk D, Sibbing D, Gurbel PA, Working Group on On-Treatment Platelet Reactivity. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol. 2013;62(24):2261–73. https://doi.org/10.1016/j.jacc.2013.07.101.

    Article  CAS  PubMed  Google Scholar 

  223. Spahn DR, Goodnough LT. Alternatives to blood transfusion. Lancet. 2013;381(9880):1855–65. https://doi.org/10.1016/S0140-6736(13)60808-9.

    Article  PubMed  Google Scholar 

  224. Kozek-Langenecker SA, Ahmed AB, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, De Robertis E, Faraoni D, Filipescu DC, Fries D, Haas T, Jacob M, Lancé MD, Pitarch JVL, Mallett S, Meier J, Molnar ZL, Rahe-Meyer N, Samama CM, Stensballe J, Van der Linden PJF, Wikkelsø AJ, Wouters P, Wyffels P, Zacharowski K. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: first update 2016. Eur J Anaesthesiol. 2017;34(6):332–95.

    Article  PubMed  Google Scholar 

  225. Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Riddez L, Samama CM, Vincent JL, Rossaint R. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care. 2019;23(1):98.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Craig J, Aguiar-Ibanez R, Bhattacharya S, Downie S, Duffy S, Kohli H, Nimmo A, Trueman P, Wilson S, Yunni Y. HTA programme: health technology assessment report 11: the clinical and cost effectiveness of thromboelastography/thromboelastometry. NHS Quality Improvement Scotland, June 2008; ISBN: 1-84404-995-0; www.hhshealthquality.org. http://www.healthcareimprovementscotland.org/previous_resources/hta_report/hta/hta_11.aspx.

  227. HealthPACT Seretariat. Health Policy Advisory Committee on Technology. Technology brief: rotational thromboelastometry (ROTEM®)—targeted therapy for coagulation management in patients with massive bleeding. State of Queensland (Queensland Health), Australia, November 2012. http://www.health.qld.gov.au/healthpact/docs/briefs/WP024.pdf.

  228. Newland A, Kroese M, Akehurst R, Collinson P, Crawford S, Cree IA, Denton E, Edwards S, Evans D, Fleming S, Hyde C, Kalsheker N, Lowry M, Messenger M, Naylor P, Neely D, Nicholas R, Norbury G, Ossa D, Sculpher M, Thomas S, Weiberger P, Wiltsher C, Argarwal S, Davidson S, Green L, Haynes S, O’Keefe N. NICE diagnostics guidance 13: detecting, managing and monitoring haemostasis: viscoelastometric point-of-care testing (ROTEM, TEG and Sonoclot systems). National Institute for Health and Care Excellence (NICE); August 2014; ISBN: 978-1-4731-0688-8; www.nice.org.uk/dg13. http://www.nice.org.uk/guidance/dg13/resources/guidance-detecting-managing-and-monitoring-haemostasis-viscoelastometric-pointofcare-testing-rotem-teg-and-sonoclot-systems-pdf.

  229. Görlinger K, Kozek-Langenecker SA. Economic aspects and organization. In: Marcucci CE, Schoettker P, editors. Perioperative hemostasis: coagulation for anesthesiologists. Berlin, Heidelberg: Springer; 2015. p. 412–45. https://doi.org/10.1007/978-3-642-55004-1_24.

    Chapter  Google Scholar 

  230. Cheng D, Martin J. Evidence-based practice and health technology assessment: a call for anesthesiologists to engage in knowledge translation. Can J Anaesth. 2011;58(4):354–63. https://doi.org/10.1007/s12630-011-9463-0.

    Article  PubMed  Google Scholar 

  231. Martin J, Cheng D. Role of the anesthesiologist in the wider governance of healthcare and health economics. Can J Anaesth. 2013;60(9):918–28. https://doi.org/10.1007/s12630-013-9994-7.

    Article  PubMed  Google Scholar 

  232. Spahn DR, Rossaint R. All we ever wanted to know about perioperative bleeding. Eur J Anaesthesiol. 2013;30(6):267–9. https://doi.org/10.1097/EJA.0b013e328361af11.

    Article  PubMed  Google Scholar 

  233. Shafi S, Barnes SA, Rayan N, Kudyakov R, Foreman M, Cryer HG, Alam HB, Hoff W, Holcomb J. Compliance with recommended care at trauma centers: association with patient outcomes. J Am Coll Surg. 2014;219(2):189–98. https://doi.org/10.1016/j.jamcollsurg.2014.04.005.

    Article  PubMed  Google Scholar 

  234. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Spahn DR. STOP bleeding campaign. The STOP the bleeding campaign. Crit Care. 2013;17(2):136. https://doi.org/10.1186/cc12579.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Dedication

This chapter is dedicated to my wife Dr. Anke Görlinger, who passed away much too early on December 27, 2019. Without her support, this work could not have been done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Görlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Görlinger, K., Dirkmann, D., Hanke, A.A. (2021). Rotational Thromboelastometry (ROTEM®). In: Moore, H.B., Neal, M.D., Moore, E.E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-030-53606-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53606-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53605-3

  • Online ISBN: 978-3-030-53606-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics