Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 172 Accesses

Abstract

Porous metals are a new class of materials with low densities and novel physical, thermal and many other properties. Many approaches have been developed to achieve porous structures. In this chapter, the definition of porous metal, production methods and thermal applications are introduced. A detailed review on fluid flow behaviour when flow through porous media is provided. The thermal properties such as thermal conductivity, heat transfer performance under natural convection and forced convection of porous metals are described in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J., Wadley, H., & Gibson, L. (2000). Metal foams: A design guide. Elsevier.

    Google Scholar 

  2. Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties. Cambridge University Press.

    Google Scholar 

  3. Surace, R., De Filippis, L., Niini, E., Ludovico, A., & Orkas, J. (2009). Morphological investigation of foamed aluminum parts produced by melt gas injection. Advances in Materials Science and Engineering.

    Google Scholar 

  4. Jin, I., Kenny, L., & Sang, H. (1991). Us patent 4 973 358 (1990). PCT Patent WO, 91, 03578.

    Google Scholar 

  5. Banhart, J., & Baumeister, J. ( 1998). Production methods for metallic foams. MRS Online Proceedings Library Archive, 521.

    Google Scholar 

  6. Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.

    Google Scholar 

  7. Speed, S. E. ( 1976). Foaming of metal by the catalyzed and controlled decomposition of zirconium hydride and titanium hydride. US Patent 3,981,720.

    Google Scholar 

  8. Hintz, C., Wagner, I., Sahm, P., & Stoyanov, P. (1999). Investment cast near-net-shape components based on cellular metal materials. In MetFoam 99: international conference on metal foams and porous metal structures (pp. 153–158).

    Google Scholar 

  9. Wadley, H. N. (2002). Cellular metals manufacturing. Advanced Engineering Materials, 4(10), 726–733.

    CAS  Google Scholar 

  10. Babjak, J., Ettel, V. A., & Paserin, V. ( 1990). Method of forming nickel foam. US Patent 4,957,543.

    Google Scholar 

  11. Yi, R., Shi, R., Gao, G., Zhang, N., Cui, X., He, Y., et al. (2009). Hollow metallic microspheres: Fabrication and characterization. The Journal of Physical Chemistry C, 113(4), 1222–1226.

    CAS  Google Scholar 

  12. Kendall, J. M., Lee, M., & Wang, T. (1982). Metal shell technology based upon hollow jet instability. Journal of Vacuum Science and Technology, 20(4), 1091–1093.

    CAS  Google Scholar 

  13. Shapovalov, V., & Withers, J. (2008). Hydrogen technology for porous metals (gasars) production. In Carbon nanomaterials in clean energy hydrogen systems (pp. 29–51). Springer.

    Google Scholar 

  14. Shapovalov, V. (2007). Prospective applications of gas-eutectic porous materials (gasars) in USA. In Materials science forum (Vol. 539, pp. 1183–1187). Trans Tech Publications.

    Google Scholar 

  15. Zhao, Y., & Sun, D. (2001). A novel sintering-dissolution process for manufacturing al foams. Scripta Materialia, 44(1), 105–110.

    CAS  Google Scholar 

  16. Zhao, Y., Fung, T., Zhang, L., & Zhang, F. (2005). Lost carbonate sintering process for manufacturing metal foams. Scripta Materialia, 52(4), 295–298.

    CAS  Google Scholar 

  17. Sutherland, J. P., Vassilatos, G., Kubota, H., & Osberg, G. L. (1963). The effect of packing on a fluidized bed. AIChE Journal, 9(4), 437–441.

    CAS  Google Scholar 

  18. Mandal, D., Vinjamur, M., & Sathiyamoorthy, D. (2013). Hydrodynamics of beds of small particles in the voids of coarse particles. Powder Technology, 235, 256–262.

    CAS  Google Scholar 

  19. Mandal, D. (2015). Hydrodynamics of particles in liquid-solid packed fluidized bed. Powder Technology, 276, 18–25.

    Google Scholar 

  20. Harris, C. (1977). Flow through porous media. Examination of the immobile fluid model. Powder Technology, 17(3), 235–252.

    Google Scholar 

  21. Kundu, P., Kumar, V., & Mishra, I. (2014). Numerical modeling of turbulent flow through isotropic porous media. International Journal of Heat and Mass Transfer, 75, 40–57.

    CAS  Google Scholar 

  22. Darcy, H. (1856). Les fontaines publique de la ville de dijon (p. 647). Paris: Dalmont.

    Google Scholar 

  23. Mokadam, R. (1961). Thermodynamic analysis of the darcy law. Journal of Applied Mechanics, 28(2), 208–212.

    CAS  Google Scholar 

  24. Chauveteau, G., & Thirriot, C. (1967). Régimes d’écoulement en milieu poreux et limite de la loi de darcy. Houille Blanche, 22(1), 1–8. cited By 17.

    Google Scholar 

  25. Dupuit, J. É. J. (1863). Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables: avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des alluvions dans les rivières à fond mobile. Dunod.

    Google Scholar 

  26. Forchheimer, P. (1901). Wasserbewegung durch boden. Zeitschrift des Vereins deutscher Ingenieure, 45, 1782–1788.

    Google Scholar 

  27. Joseph, D., Nield, D., & Papanicolaou, G. (1982). Nonlinear equation governing flow in a saturated porous medium. Water Resources Research, 18(4), 1049–1052.

    Google Scholar 

  28. Ward, J. (1964). Turbulent flow in porous media. Journal of the Hydraulics Division, 90(5), 1–12.

    Google Scholar 

  29. Irmay, S. (1958). On the theoretical derivation of darcy and forchheimer formulas. Eos, Transactions American Geophysical Union, 39(4), 702–707.

    Google Scholar 

  30. Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94.

    CAS  Google Scholar 

  31. Macdonald, I., El-Sayed, M., Mow, K., & Dullien, F. (1979). Flow through porous media-the ergun equation revisited. Industrial & Engineering Chemistry Fundamentals, 18(3), 199–208.

    CAS  Google Scholar 

  32. Brinkman, H. (1949a). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1), 27.

    Google Scholar 

  33. Brinkman, H. (1949b). On the permeability of media consisting of closely packed porous particles. Flow, Turbulence and Combustion, 1(1), 81.

    Google Scholar 

  34. Ochoa-Tapia, J. A., & Whitaker, S. (1995). Momentum transfer at the boundary between a porous medium and a homogeneous fluid\(^{TM}\)i . Theoretical development. International Journal of Heat and Mass Transfer, 38(14), 2635–2646.

    Google Scholar 

  35. Saez, A. E., Perfetti, J., & Rusinek, I. (1991). Prediction of effective diffusivities in porous media using spatially periodic models. Transport in Porous Media, 6(2), 143–157.

    CAS  Google Scholar 

  36. Liu, S., & Masliyah, J. H. (2005). Dispersion in porous media. In Handbook of porous media (pp. 99–160). CRC Press.

    Google Scholar 

  37. Cheng, N. -S., Hao, Z., & Tan, S. K. (2008). Comparison of quadratic and power law for nonlinear flow through porous media. Experimental Thermal and Fluid Science, 32(8), 1538–1547.

    Google Scholar 

  38. Moutsopoulos, K. N., Papaspyros, I. N., & Tsihrintzis, V. A. (2009). Experimental investigation of inertial flow processes in porous media. Journal of Hydrology, 374(3–4), 242–254.

    Google Scholar 

  39. Dybbs, A., & Edwards, R. (1984). A new look at porous media fluid mechanics–Darcy to turbulent. In: Fundamentals of transport phenomena in porous media (pp. 199–256). Springer.

    Google Scholar 

  40. Fand, R., Kim, B., Lam, A., & Phan, R. (1987). Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. Journal of Fluids Engineering, 109(3), 268–273.

    CAS  Google Scholar 

  41. Kececioglu, I., & Jiang, Y. (1994). Flow through porous media of packed spheres saturated with water. Journal of Fluids Engineering, 116(1), 164–170.

    CAS  Google Scholar 

  42. Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.

    Google Scholar 

  43. Polubarinova-Koch, P. I. (2015). Theory of ground water movement. Princeton University Press.

    Google Scholar 

  44. Soni, J., Islam, N., & Basak, P. (1978). An experimental evaluation of non-darcian flow in porous media. Journal of Hydrology, 38(3–4), 231–241.

    Google Scholar 

  45. Comiti, J., Sabiri, N., & Montillet, A. (2000). Experimental characterization of flow regimes in various porous media–iii: Limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chemical Engineering Science, 55(15), 3057–3061.

    Google Scholar 

  46. Li, L., & Ma, W. (2011). Experimental study on the effective particle diameter of a packed bed with non-spherical particles. Transport in Porous Media, 89(1), 35–48.

    CAS  Google Scholar 

  47. Mishra, P., Singh, D., & Mishra, I. (1975). Momentum transfer to newtonian and non-newtonian fluids flowing through packed and fluidized beds. Chemical Engineering Science, 30(4), 397–405.

    CAS  Google Scholar 

  48. Pamuk, M. T., & Özdemir, M. (2012). Friction factor, permeability and inertial coefficient of oscillating flow through porous media of packed balls. Experimental Thermal and Fluid Science, 38, 134–139.

    CAS  Google Scholar 

  49. Durst, F. ( 1980). Principles of laser doppler anemometers (Vol. 1, 11 p.). In Von Karman Inst. of Fluid Dyn. Meas. and Predictions of Complex Turbulent Flows (SEE N81-15263 06-34)

    Google Scholar 

  50. Huettel, S. A., Song, A. W., McCarthy, G., et al. (2004). Functional magnetic resonance imaging (Vol. 1). MA: Sinauer Associates Sunderland.

    Google Scholar 

  51. Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). Particle image velocimetry: A practical guide. Springer.

    Google Scholar 

  52. Dracos, T. (2013). Three-dimensional velocity and vorticity measuring and image analysis techniques: Lecture notes from the short course held in Zürich, Switzerland, 3–6 September 1996 (Vol. 4). Springer Science & Business Media.

    Google Scholar 

  53. Johnston, W., Dybbs, A., & Edwards, R. (1975). Measurement of fluid velocity inside porous media with a laser anemometer. The Physics of Fluids, 18(7), 913–914.

    Google Scholar 

  54. Yarlagadda, A., & Yoganathan, A. (1989). Experimental studies of model porous media fluid dynamics. Experiments in Fluids, 8(1–2), 59–71.

    CAS  Google Scholar 

  55. Sederman, A., Johns, M., Bramley, A., Alexander, P., & Gladden, L. (1997). Magnetic resonance imaging of liquid flow and pore structure within packed beds. Chemical Engineering Science, 52(14), 2239–2250.

    CAS  Google Scholar 

  56. Baumann, T., & Werth, C. J. (2005). Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 265(1–3), 2–10.

    CAS  Google Scholar 

  57. Fredrich, J. (1999). 3d imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(7), 551–561.

    Google Scholar 

  58. Datta, S. S., Chiang, H., Ramakrishnan, T., & Weitz, D. A. (2013). Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. Physical Review Letters, 111(6), 064501.

    Google Scholar 

  59. Saleh, S., Thovert, J., & Adler, P. (1992). Measurement of two-dimensional velocity fields in porous media by particle image displacement velocimetry. Experiments in Fluids, 12(3), 210–212.

    CAS  Google Scholar 

  60. Rashidi, M., Peurrung, L., Tompson, A., & Kulp, T. (1996). Experimental analysis of pore-scale flow and transport in porous media. Advances in Water Resources, 19(3), 163–180.

    Google Scholar 

  61. Hassan, Y. A., & Dominguez-Ontiveros, E. (2008). Flow visualization in a pebble bed reactor experiment using piv and refractive index matching techniques. Nuclear Engineering and Design, 238(11), 3080–3085.

    CAS  Google Scholar 

  62. Huang, A. Y., Huang, M. Y., Capart, H., & Chen, R.-H. (2008). Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres. Experiments in Fluids, 45(2), 309–321.

    Google Scholar 

  63. Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D., & Adrian, R. J. (1998). A particle image velocimetry system for microfluidics. Experiments in Fluids, 25(4), 316–319.

    CAS  Google Scholar 

  64. Meinhart, C. D., Wereley, S. T., & Santiago, J. G. (1999). Piv measurements of a microchannel flow. Experiments in Fluids, 27(5), 414–419.

    Google Scholar 

  65. Zerai, B., Saylor, B. Z., Kadambi, J. R., Oliver, M. J., Mazaheri, A. R., Ahmadi, G., et al. (2005). Flow characterization through a network cell using particle image velocimetry. Transport in Porous Media, 60(2), 159–181.

    CAS  Google Scholar 

  66. Sen, D., Nobes, D. S., & Mitra, S. K. (2012). Optical measurement of pore scale velocity field inside microporous media. Microfluidics and Nanofluidics, 12(1–4), 189–200.

    Google Scholar 

  67. Bastawros, A.-F., & Evans, A. (1997). Characterisation of open-cell aluminum alloy foams as heat sinks for high power electronic devices. ASME-PUBLICATIONS-HTD, 356, 1–6.

    Google Scholar 

  68. Mahdi, R. A., Mohammed, H., Munisamy, K., & Saeid, N. (2015). Review of convection heat transfer and fluid flow in porous media with nanofluid. Renewable and Sustainable Energy Reviews, 41, 715–734.

    CAS  Google Scholar 

  69. García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85.

    PubMed Central  Google Scholar 

  70. Ejlali, A., Ejlali, A., Hooman, K., & Gurgenci, H. (2009). Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems. International Communications in Heat and Mass Transfer, 36(7), 674–679.

    CAS  Google Scholar 

  71. Boomsma, K., & Poulikakos, D. (2002). The effects of compression and pore size variations on the liquid flow characteristics in metal foams. Journal of Fluids Engineering, 124(1), 263–272.

    CAS  Google Scholar 

  72. Hutter, C., Büchi, D., Zuber, V., & von Rohr, P. R. (2011). Heat transfer in metal foams and designed porous media. Chemical Engineering Science, 66(17), 3806–3814.

    CAS  Google Scholar 

  73. Zhao, C., Lu, T., & Hodson, H. (2004). Thermal radiation in ultralight metal foams with open cells. International Journal of Heat and Mass Transfer, 47(14–16), 2927–2939.

    CAS  Google Scholar 

  74. Progelhof, R., & Throne, J. (1975). Cooling of structural foams. Journal of Cellular Plastics, 11(3), 152–163.

    CAS  Google Scholar 

  75. Russell, H. (1935). Principles of heat flow in porous insulators. Journal of the American Ceramic Society, 18(1–12), 1–5.

    CAS  Google Scholar 

  76. Maxwell, J. C. (1881). A treatise on electricity and magnetism (Vol. 1). Clarendon Press.

    Google Scholar 

  77. Progelhof, R., Throne, J., & Ruetsch, R. (1976). Methods for predicting the thermal conductivity of composite systems: A review. Polymer Engineering & Science, 16(9), 615–625.

    CAS  Google Scholar 

  78. Collishaw, P., & Evans, J. (1994). An assessment of expressions for the apparent thermal conductivity of cellular materials. Journal of Materials Science, 29(9), 2261–2273.

    CAS  Google Scholar 

  79. Leach, A. (1993). The thermal conductivity of foams. I. Models for heat conduction. Journal of Physics D: Applied Physics, 26(5), 733.

    CAS  Google Scholar 

  80. Bruggeman, D. (1935). Dielectric constant and conductivity of mixtures of isotropic materials. Annalen Physik (Leipzig), 24, 636–679.

    CAS  Google Scholar 

  81. Boomsma, K., & Poulikakos, D. (2001). On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. International Journal of Heat and Mass Transfer, 44(4), 827–836.

    CAS  Google Scholar 

  82. Bhattacharya, A., Calmidi, V., & Mahajan, R. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer, 45(5), 1017–1031.

    CAS  Google Scholar 

  83. Paek, J., Kang, B., Kim, S., & Hyun, J. M. (2000). Effective thermal conductivity and permeability of aluminum foam materials. International Journal of Thermophysics, 21(2), 453–464.

    CAS  Google Scholar 

  84. Calmidi, V., & Mahajan, R. (1999). The effective thermal conductivity of high porosity fibrous metal foams. Journal of Heat Transfer, 121(2), 466–471.

    CAS  Google Scholar 

  85. Zhao, C., Lu, T., Hodson, H., & Jackson, J. (2004). The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Materials Science and Engineering: A, 367(1–2), 123–131.

    Google Scholar 

  86. Valenzuela, J., & Glicksman, L. (1983). Thermal resistance and aging of rigid urethane foam insulation. In: Thermal insulation, materials, and systems for energy conservation in the ‘80s’. ASTM. International.

    Google Scholar 

  87. Skochdopole, R. (1961). The thermal conductivity of foamed plastics. Chemical Engineering Progress, 57(10), 55–59.

    Google Scholar 

  88. Seta, T., Takegoshi, E., & Okui, K. (2006). Lattice boltzmann simulation of natural convection in porous media. Mathematics and Computers in Simulation, 72(2–6), 195–200.

    Google Scholar 

  89. Braga, E. J., & De Lemos, M. J. (2005). Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models. International Journal of Heat and Mass Transfer, 48(23–24), 4748–4765.

    CAS  Google Scholar 

  90. Merrikh, A. A., & Lage, J. L. (2005). Natural convection in an enclosure with disconnected and conducting solid blocks. International Journal of Heat and Mass Transfer, 48(7), 1361–1372.

    Google Scholar 

  91. Liu, Q., & He, Y.-L. (2017). Lattice boltzmann simulations of convection heat transfer in porous media. Physica A: Statistical Mechanics and its Applications, 465, 742–753.

    CAS  Google Scholar 

  92. Zhao, C., Lu, T., & Hodson, H. (2005). Natural convection in metal foams with open cells. International Journal of Heat and Mass Transfer, 48(12), 2452–2463.

    CAS  Google Scholar 

  93. Dyga, R., & Płaczek, M. (2015). Heat transfer through metal foam-fluid system. Experimental Thermal and Fluid Science, 65, 1–12.

    Google Scholar 

  94. Bear, J., & Corapcioglu, M. Y. (2012). Advances in transport phenomena in porous media (Vol. 128). Springer Science & Business Media.

    Google Scholar 

  95. Almogbel, M., & Bejan, A. (2000). Cylindrical trees of pin fins. International Journal of Heat and Mass Transfer, 43(23), 4285–4297.

    Google Scholar 

  96. Şara, O., Yapıcı, S., Yılmaz, M., & Pekdemir, T. (2001). Second law analysis of rectangular channels with square pin-fins. International Communications in Heat and Mass Transfer, 28(5), 617–630.

    Google Scholar 

  97. Huang, R.-T., Sheu, W.-J., & Wang, C.-C. (2008). Orientation effect on natural convective performance of square pin fin heat sinks. International Journal of Heat and Mass Transfer, 51(9–10), 2368–2376.

    CAS  Google Scholar 

  98. Ahmadi, M., Mostafavi, G., & Bahrami, M. (2014). Natural convection from rectangular interrupted fins. International Journal of Thermal Sciences, 82, 62–71.

    CAS  Google Scholar 

  99. Effendi, N. S., & Kim, K. J. (2017). Orientation effects on natural convective performance of hybrid fin heat sinks. Applied Thermal Engineering, 123, 527–536.

    Google Scholar 

  100. Ali, M., & Ramadhyani, S. (1992). Experiments on convective heat transfer in corrugated channels. EXperimental Heat Transfer an International Journal, 5(3), 175–193.

    CAS  Google Scholar 

  101. Ali, A. H. H., & Hanaoka, Y. (2002). Experimental study on laminar flow forced-convection in a channel with upper v-corrugated plate heated by radiation. International Journal of Heat and Mass Transfer, 45(10), 2107–2117.

    CAS  Google Scholar 

  102. Navaei, A., Mohammed, H., Munisamy, K., Yarmand, H., & Gharehkhani, S. (2015). Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technology, 286, 332–341.

    CAS  Google Scholar 

  103. Calmidi, V., & Mahajan, R. (2000). Forced convection in high porosity metal foams. Journal of Heat Transfer, 122(3), 557–565.

    CAS  Google Scholar 

  104. Bhattacharya, A., & Mahajan, R. L. (2002). Finned metal foam heat sinks for electronics cooling in forced convection. Journal of Electronic Packaging, 124(3), 155–163.

    CAS  Google Scholar 

  105. Thewsey, D., & Zhao, Y. (2008). Thermal conductivity of porous copper manufactured by the lost carbonate sintering process. Physica Status Solidi (a), 205(5), 1126–1131.

    Google Scholar 

  106. Xiao, Z., & Zhao, Y. (2013). Heat transfer coefficient of porous copper with homogeneous and hybrid structures in active cooling. Journal of Materials Research, 28(17), 2545–2553.

    CAS  Google Scholar 

  107. Diao, K., Xiao, Z., & Zhao, Y. (2015). Specific surface areas of porous cu manufactured by lost carbonate sintering: Measurements by quantitative stereology and cyclic voltammetry. Materials Chemistry and Physics, 162, 571–579.

    CAS  Google Scholar 

  108. Diao, K., Zhang, L., & Zhao, Y. (2017). Measurement of tortuosity of porous cu using a diffusion diaphragm cell. Measurement, 110, 335–338.

    Google Scholar 

  109. Lee, D.-Y., Chae, M.-S., & Chung, B.-J. (2017). Natural convective heat transfer of heated packed beds. International Communications in Heat and Mass Transfer, 88, 54–62.

    Google Scholar 

  110. Achenbach, E. (1995). Heat and flow characteristics of packed beds. Experimental Thermal and Fluid Science, 10(1), 17–27.

    CAS  Google Scholar 

  111. Horton, C., & Rogers, F., Jr. (1945). Convection currents in a porous medium. Journal of Applied Physics, 16(6), 367–370.

    Google Scholar 

  112. Lapwood, E. (1948). Convection of a fluid in a porous medium. In: Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 44, pp. 508–521). Cambridge University Press.

    Google Scholar 

  113. Nield, D. A., Bejan, A., et al. (2006). Convection in porous media (Vol. 3). Springer.

    Google Scholar 

  114. Khashan, S., Al-Amiri, A., & Al-Nimr, M. (2005). Assessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes. Applied Thermal Engineering, 25(10), 1429–1445.

    CAS  Google Scholar 

  115. Magyari, E., & Rees, D. (2006). Effect of viscous dissipation on the darcy free convection boundary-layer flow over a vertical plate with exponential temperature distribution in a porous medium. Fluid Dynamics Research, 38(6), 405.

    Google Scholar 

  116. Nield, D. (1996). The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium. Journal of Heat Transfer, 118(3), 803–805.

    CAS  Google Scholar 

  117. Incropera, F. P., Lavine, A. S., Bergman, T. L., & DeWitt, D. P. (2007). Fundamentals of heat and mass transfer. Wiley.

    Google Scholar 

  118. Bhattacharya, A., & Mahajan, R. (2006). Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection. Journal of Electronic Packaging, 128(3), 259–266.

    CAS  Google Scholar 

  119. Hetsroni, G., Gurevich, M., & Rozenblit, R. (2008). Natural convection in metal foam strips with internal heat generation. Experimental Thermal and Fluid Science, 32(8), 1740–1747.

    CAS  Google Scholar 

  120. Afifi, R., & Berbish, N. (1999). Experimental investigation of forced convection heat transfer over a horizontal flat plate in a porous medium. Journal of Engineering and Applied Sciences, 46, 693–710.

    Google Scholar 

  121. Magyari, E., Keller, B., & Pop, I. (2001). Exact analytical solutions of forced convection flow in a porous medium. International Communications in Heat and Mass Transfer, 28(2), 233–241.

    CAS  Google Scholar 

  122. Ramirez, N., & Saez, A. E. (1990). The effect of variable viscosity on boundary-layer heat transfer in a porous medium. International Communications in Heat and Mass Transfer, 17(4), 477–488.

    CAS  Google Scholar 

  123. Ling, J., & Dybbs, A. (1992). The effect of variable viscosity on forced convection over a flat plate submersed in a porous medium. Journal of Heat Transfer, 114(4), 1063–1065.

    CAS  Google Scholar 

  124. Nakayama, A., & Ebinuma, C. (1990). Transient non-darcy forced convective heat transfer from a flat plate embedded in a fluid-saturated porous medium. International Journal of Heat and Fluid Flow, 11(3), 249–253.

    CAS  Google Scholar 

  125. Lai, F., & Kulacki, F. (1989). Thermal dispersion effects on non-darcy convection over horizontal surfaces in saturated porous media. International Journal of Heat and Mass Transfer, 32(5), 971–976.

    CAS  Google Scholar 

  126. Vafai, K., & Tien, H. (1989). A numerical investigation of phase change effects in porous materials. International Journal of Heat and Mass Transfer, 32(7), 1261–1277.

    CAS  Google Scholar 

  127. Jiang, P. -X., Wang, Z., & Ren, Z. (1998). Fluid flow and convection heat transfer in a plate channel filled with solid particles. In International heat transfer conference digital library. Begel House Inc.

    Google Scholar 

  128. Jiang, P. -X. (1999). Numerical simulation of forced convection heat transfer in porous plate channels using thermal equilibrium and nonthermal equilibrium models. Numerical Heat Transfer: Part A: Applications, 35(1), 99–113.

    Google Scholar 

  129. Moghari, M. (2008). A numerical study of non-equilibrium convective heat transfer in porous media. Journal of Enhanced Heat Transfer, 15(1).

    Google Scholar 

  130. Mahjoob, S., & Vafai, K. (2008). A synthesis of fluid and thermal transport models for metal foam heat exchangers. International Journal of Heat and Mass Transfer, 51(15–16), 3701–3711.

    Google Scholar 

  131. Dai, Z., Nawaz, K., Park, Y., Chen, Q., & Jacobi, A. (2012). A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications. Heat Transfer Engineering, 33(1), 21–30.

    CAS  Google Scholar 

  132. Wakao, N., & Funazkri, T. (1978). Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of sherwood numbers. Chemical Engineering Science, 33(10), 1375–1384.

    CAS  Google Scholar 

  133. Hwang, G., & Chao, C. (1994). Heat transfer measurement and analysis for sintered porous channels. Journal of Heat Transfer, 116(2), 456–464.

    Google Scholar 

  134. Bertola, V., & Cafaro, E. (2005). Intermediate asymptotic behaviour of fluid flows by scale-size analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2055), 755–760.

    Google Scholar 

  135. Kreith, F., Manglik, R. M., & Bohn, M. S. (2012). Principles of heat transfer. Cengage learning.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianke Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X. (2020). Literature Review. In: Fluid Flow and Heat Transfer in Porous Media Manufactured by a Space Holder Method. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-53602-2_2

Download citation

Publish with us

Policies and ethics