Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 163 Accesses

Abstract

The previous chapters discussed how multi-phase droplets interact with light, in particular how the droplets control light. This chapter focuses instead on how light, or the heat produced by the absorption of light, can control droplets. Experimentally, these multi-phase droplets can be manipulated (rotation and some translation) with relatively low temperature gradients induced by a focused near-infrared laser in an aqueous medium. The motion of the droplets can be attributed to thermal Marangoni flows within the droplets, due to the local heating from the focused laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Zarzar, V. Sresht, E.M. Sletten, J.A. Kalow, D. Blankschtein, T.M. Swager, Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518(7540), 520–524 (2015)

    Article  ADS  Google Scholar 

  2. J. Thomson, XlII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Lond. Edinb. Dublin Philos. Mag. J. Sci. 10(67), 330–333 (1855)

    Google Scholar 

  3. M. Gugliotti, M.S. Baptista, M.J. Politi, T.P. Silverstein, C.D. Slater, Surface tension gradients induced by temperature: the thermal Marangoni effect. J. Chem. Educ. 81(6), 824 (2004)

    Google Scholar 

  4. B.V. Hokmabad, K.A. Baldwin, C. Krüger, C. Bahr, C.C. Maass, Active double emulsions. Preprint, arXiv:1810.07223 (2018)

    Google Scholar 

  5. A.I. Fedosov, Thermocapillary motion. arXiv:1303.0243 [physics], March 2013

    Google Scholar 

  6. N.O. Young, J.S. Goldstein, M.J. Block, The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6(3), 350–356 (1959)

    Article  ADS  Google Scholar 

  7. D.S. Morton, R.S. Subramanian, R. Balasubramaniam, The migration of a compound drop due to thermocapillarity. Phys. Fluids A Fluid Dyn. 2(12), 2119–2133 (1990)

    Article  ADS  Google Scholar 

  8. L. Rosenfeld, O.M. Lavrenteva, A. Nir, On the thermocapillary motion of partially engulfed compound drops. J. Fluid Mech. 626, 263–289 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.-C. Baret, Surfactants in droplet-based microfluidics. Lab Chip 12(3), 422–433 (2012)

    Article  Google Scholar 

  10. J. Won, W. Lee, S. Song, Estimation of the thermocapillary force and its applications to precise droplet control on a microfluidic chip. Scientific Rep. 7(1), 3062 (2017)

    Google Scholar 

  11. J. Chen, K.J. Stebe, Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech. 340, 35–59 (1997)

    Article  ADS  Google Scholar 

  12. H.S. Kim, R.S. Subramanian, Thermocapillary migration of a droplet with insoluble surfactant. J. Colloid Interface Sci. 127(2), 417–428 (1989)

    Article  ADS  Google Scholar 

  13. C.N. Baroud, J.-P. Delville, F. Gallaire, R. Wunenburger, Thermocapillary valve for droplet production and sorting. Phys. Rev. E 75(4), 046302 (2007)

    Google Scholar 

  14. M.R. de Saint Vincent, R. Wunenburger, J.-P. Delville, Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92(15), 154105 (2008)

    Google Scholar 

  15. M.C.J. Coolen, R.N. Kieft, C.C.M. Rindt, A.A. van Steenhoven, Application of 2-D LIF temperature measurements in water using a nd : YAG laser. Exp. Fluids 27(5), 420–426 (1999)

    Article  Google Scholar 

  16. J.A. Sutton, B.T. Fisher, J.W. Fleming, A laser-induced fluorescence measurement for aqueous fluid flows with improved temperature sensitivity. Exp. Fluids 45(5), 869 (2008)

    Google Scholar 

  17. C.E. Estrada-Pérez, Y.A. Hassan, S. Tan, Experimental characterization of temperature sensitive dyes for laser induced fluorescence thermometry. Rev. Sci. Instrum. 82(7), 074901 (2011)

    Google Scholar 

  18. J.D. Nash, G.H. Jirka, D. Chen, Large scale planar laser induced fluorescence in turbulent density-stratified flows. Exp. Fluids 19(5), 297–304 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagelberg, S. (2020). Thermal Actuation of Bi-Phase Droplets. In: Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-53460-8_5

Download citation

Publish with us

Policies and ethics