Skip to main content

Chemosynthetic Ecosystems on the Brazilian Deep-Sea Margin

  • Chapter
  • First Online:
  • 367 Accesses

Part of the book series: Brazilian Marine Biodiversity ((BMB))

Abstract

Chemosynthetic ecosystems are fueled by reduced compounds (CH4 and/or H2S), which are important for the chemosynthetic production by microbiota. They comprise hydrothermal vents, cold seeps, and large organic “islands” or patches, such as whale skeletons and wood falls. Despite common along a large range of geological settings around the world, chemosynthetic ecosystems have only been recently found in the Southwestern Atlantic Ocean. This knowledge gap hinders the understanding of the distribution, biogeography, and evolution of chemosynthetic-related fauna. Only one active seep is known in the SW Atlantic at the Rio Grande Cone where anaerobic methanotrophic archaea sustain typical chemosynthetic fauna hosting symbiotic chemoautotrophic bacteria, such as vestimentiferan annelids and solemyid bivalves. However, abundant geological and biological evidence point out that seeps could be frequent along the Brazilian margin. The degradation of the massive organic matter input from a whale carcass and/or large amount of wood increases the concentration of reduced compounds, such as sulfide, which allows chemosynthetic production. As a result, the community established in whale falls or sunken wood resembles those of vents and seeps with part of the fauna relying on the chemosynthetic production. These communities can be common around the world mainly along migratory routes of whales. The Amazon and La Plata rivers are likely to contribute with an abundant quantity of dead wood remains in the SW Atlantic. Despite that, the potential amount of wood was probably negatively affected by the heavy deforestation of the Atlantic rain forest in the last century, reducing the habitat available to wood specialists. The intense exploitation of oil and gas industry along the Brazilian margin as well as the deforestation of Brazilian forests and the pressure on the whale populations could impact indirectly the chemosynthetic communities of this region. Therefore, studies on the chemosynthetic communities of the SW Atlantic as well as the connectivity with other ocean basins are important for conservation efforts in the deep areas off Brazil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfaro-Lucas JM, Shimabukuro M, Ferreira GD et al (2017) Bone-eating Osedax worms (Annelida: Siboglinidae) regulate biodiversity of deep-sea whale-fall communities. Deep-Sea Res II 146:4–12. https://doi.org/10.1016/j.dsr2.2017.04.011

    Article  CAS  Google Scholar 

  • Alfaro-Lucas JM, Shimabukuro M, Ogata IV et al (2018) Trophic structure and chemosynthesis contributions to heterotrophic fauna inhabiting an abyssal whale carcass. Mar Ecol Prog Ser 596:1–12

    Article  CAS  Google Scholar 

  • Amon DJ, Glover AG, Wiklund H et al (2013) The discovery of a natural whale fall in the Antarctic deep sea. Deep-Sea Res II 92:87–96

    Article  Google Scholar 

  • Baco AR, Smith CR, Peek AS et al (1999) The phylogenetic relationships of the whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar Ecol Prog Ser 182:205–223

    Article  Google Scholar 

  • Barroso R, Kudenov JD, Halanych KM et al (2018) A new species of xylophylic fireworm (Annelida: Amphinomidae: Cryptonome) from deep-sea wood falls in the SW Atlantic. Deep-Sea Res I 137:66–75. https://doi.org/10.1016/j.dsr.2018.05.005

    Article  Google Scholar 

  • Bennett BA, Smith CR, Glaser B et al (1994) Faunal community structure of a chemotrophic assemblage on whale bones in the deep Northeast Pacific Ocean. Mar Ecol Prog Ser 108:205–223

    Article  Google Scholar 

  • Bernardino AF, Sumida PYG (2017) Deep risks from offshore development. Science 358(6361):312

    CAS  PubMed  Google Scholar 

  • Bernardino AF, Smith CR, Baco A et al (2010) Macrofaunal succession in sediments around kelp and wood falls in the deep NE Pacific and community overlap with other reducing habitats. Deep-Sea Res I 57:708–723

    Article  Google Scholar 

  • Bernardino AF, Levin LA, Thurber AR et al (2012) Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS One 7(4):e33515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardino AF, Li Y, Smith CR et al (2017) Multiple introns in a deep-sea annelid (Decemunciger: Ampharetidae) mitochondrial genome. Sci Rep 7:4295. https://doi.org/10.1038/s41598-017-04094-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienhold C, Ristova PP, Wenzhöfer F et al (2013) How deep-sea wood falls sustain chemosynthetic life. PLoS One 8(1):e53590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billett DSM, Bett BJ, Jacobs CL et al (2006) Mass deposition of jellyfish in the deep Arabian Sea. Limnol Oceanogr 51(5):2077–2083

    Article  Google Scholar 

  • Boetius A (2002) Lost city life. Science 307:420–422

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bortolotto GA, Danielewicz D, Hammond PS et al (2017) Whale distribution in a breeding area: spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar Ecol Prog Ser 585:213–227

    Article  Google Scholar 

  • Braby CE, Rouse GW, Johnson SB et al (2007) Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep-Sea Res I 54:1773–1791

    Article  Google Scholar 

  • Câmara IG, Palazzo JT (1986) Novas informações sobre a presença de Eubalaena australis no sul do Brasil. I Reunión de Trabajo de Especialistas en Mamíferos Acuáticos de América del Sur. Actas, pp 35–41

    Google Scholar 

  • Campos et al (2011) Plano de ação nacional para conservação dos mamíferos aquáticos: grandes cetáceos e pinípedes: versão III. Organizadores Claudia Cavalcante Rocha Campos e Ibsen de Gusmão Câmara. Brasília: Instituto Chico Mendes de Conservação da Biodiversidade, ICMBio, 156 p. http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/pan-gdes_cetaceos_sirenios/livro_grandescetaceos_icmbio-web.pdf

  • Chapman RE (1983) Diapirs, Diapirism and growth structures. In: Petroleum geology. Developments in Petroleum Science, 16. Elsevier Science Publisher, Amsterdam, Netherlands, pp 325–348

    Google Scholar 

  • Contreras J, Zühlke R, Bowman S et al (2010) Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Mar Pet Geol 27:1952–1980

    Article  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI et al (1979) Submarine thermal springs on the Galápagos Rift. Science 203(4385):1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Cunha MR, Matos FL, Génio L et al (2013) Are organic falls bridging reduced environments in the deep sea? – Results from colonization experiments in the Gulf of Cádiz. PLoS One 8(10):e76688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlgren TG, Glover AG, Baco A et al (2004) Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean. Deep-Sea Res I 51(12):1873–1887

    Article  Google Scholar 

  • Dall WH (1890) Preliminary report on the collection of Mollusca and Brachiopoda obtained in 1887-88. Proc U S Nat Mus 12(773):219–362

    Article  Google Scholar 

  • Dalla Rosa L (1995) Interações com a pesca de espinhel e informações sobre a dieta alimentar de orca, Orcinus orca, no sul e sudeste do Brasil. Fundação Universidade do Rio Grande, Monografia de Bacharelado

    Google Scholar 

  • Dalla Rosa L, Secchi ER (1997) Stranding of a blue whale (Balaenoptera musculus) in southern Brazil: ‘true’ or pygmy? Rep Int Whal Commn 47:425–430

    Google Scholar 

  • Danise S, Higgs ND (2015) Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biol Lett 11:20150072

    Article  PubMed  PubMed Central  Google Scholar 

  • Danovaro R, Snelgrove PVR, Tyler P (2014) Challenging the paradigms of deep-sea ecology. TREE 29(8):465–475. https://doi.org/10.1016/j.tree.2014.06.002

    Article  PubMed  Google Scholar 

  • Dayton PK, Hessler RR (1972) Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res Oceanogr Abst 19(3):199

    Article  Google Scholar 

  • Deming J, Reysenbach AL, Macko SA et al (1997) The microbial diversity at a whale fall on the seafloor: bone-colonizing mats and animal-associated symbionts. Microsc Res Tech 37:162–170

    Article  CAS  PubMed  Google Scholar 

  • Di Beneditto APM, Ramos RMA, Lima NRW (1998) Fishing activity in northern Rio de Janeiro State (Brazil) and its relation with small cetaceans. Braz Arch Biol Technol 41(3):296–302

    Article  Google Scholar 

  • Dias RJS (2015) Morfologia e sedimentação na plataforma continental externa e talude ao largo da Ilha de São Sebastião - SP. (Master thesis, in portuguese). http://www.teses.usp.br/teses/disponiveis/21/21136/tde-05092016-143309/pt-br.php

  • Distel DL, Baco AR, Chuang E et al (2000) Marine ecology: do mussels take wooden steps to deep-sea vents? Nature 403(6771):725–726

    Article  CAS  PubMed  Google Scholar 

  • Domaneschi O, Lopes SGBC (1990) Calyptogena (Calyptogena) birmani, a new species of Vesicomyidae (Mollusca: Bivalvia) from Brazil. Malacologia 31(2):363–370

    Google Scholar 

  • Fagervold SK, Galand PE, Zbinden M et al (2012) Sunken wood on the ocean floor provide diverse specialized habitats for microorganisms. FEMS Microb Ecol 82(3):616–628

    Article  CAS  Google Scholar 

  • Feldman RA, Shank TM, Black MB et al (1998) Vestimentiferan on a whale fall. Biol Bull 194:116–119

    Article  CAS  PubMed  Google Scholar 

  • Freire AFM, Iemini JA, Viana AR et al (2017) A giant oil seep at a salt-induced escarpment of the São Paulo Plateau, Espírito Santo Basin. Off Brazil: host rock characteristics and geochemistry. Deep-Sea Res II 146:45–52

    Article  Google Scholar 

  • Fujikura K, Yamanaka T, Sumida PYG et al (2017) Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep-Sea Res II 146:35–44

    Article  CAS  Google Scholar 

  • Fujiwara Y, Kawato M, Yamamoto T et al (2007) Three-year investigations into sperm whale-fall ecosystems in Japan. Mar Ecol 28:219–232

    Article  Google Scholar 

  • Fujiwara Y, Kawato M, Noda C et al (2010) Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipicola pacifica: a trend in evolution from extra- to intracellular symbiosis. PLoS One 5(7):e11808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara Y, Jimi N, Sumida PYG et al (2019) New species of bone-eating worm Osedax from the abyssal South Atlantic Ocean (Annelida, Siboglinidae). ZooKeys 814:53–69

    Article  Google Scholar 

  • Gardiner SL, Hourdez S (2003) On the occurrence of the vestimentiferan tube worm Lamellibrachia luymesi van der Land and Nørrevang, 1975 (Annelida: Pogonophora) in hydrocarbon seep communities in the Gulf of Mexico. Proc Biol Soc Wash 116(2):380–394

    Google Scholar 

  • German CR, Parson LM, Bougault H et al (1996) Hydrothermal exploration near the Azores Triple Junction: tectonic control of venting at slow-spreading ridges? Earth Planet Sci Lett 138:93–104

    Article  CAS  Google Scholar 

  • German CR, Baker ET, Mevel C et al (1998) Hydrothermal activity along the southwest Indian Ridge. Nature 395(6701):490–493

    Article  CAS  Google Scholar 

  • German CR, Bennett SA, Connelly DP et al (2008) Hydrothermal activity on the southern Mid-Atlantic Ridge: tectonically- and volcanically-controlled venting at 4-5°S. Earth Planet Sci Lett 273(3–4):332–344

    Article  CAS  Google Scholar 

  • German CR, Ramirez-Llodra E, Baker MC et al (2011) Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map. PLoS One 6(8):e23259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giongo A, Haag T, Simão TLL et al (2016) Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep-Sea Res I 112:45–56

    Article  CAS  Google Scholar 

  • Glover AG, Goetze E, Dahlgren TG et al (2005) Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal vent specialist, Bathykurila guaymasensis Pettibone, 1989 (Annelida: Polynoidae). Mar Ecol 26:223–234

    Article  Google Scholar 

  • Glover AG, Higgs ND, Bagley PM et al (2010) A live video observatory reveals temporal processes at a shelf-depth whale-fall. Cah Biol Mar 51:375–381

    Google Scholar 

  • Goffredi SK, Paull CK, Fulton-Bennett K et al (2004) Unusual benthic faunal associated with a whale fall in Monterey canyon, California. Deep-Sea Res I 51:1295–1306

    Article  Google Scholar 

  • Goffredi SK, Wilpiszeski R, Lee R et al (2008) Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J 2:204–220

    Article  CAS  PubMed  Google Scholar 

  • Gooday AJ (2002) Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J Oceanogr 58:305–332

    Article  CAS  Google Scholar 

  • Gooday AJ, Turley CM (1990) Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philos Trans R Soc Lond A 331:119–138

    Article  CAS  Google Scholar 

  • Hasegawa K, Fujiwara Y, Okutani T et al (2019) A new gastropod associated with a deep-sea whale carcass from São Paulo Ridge, Southwest Atlantic. Zootaxa 4568(2):347–356

    Google Scholar 

  • Haase KM, Petersen S, Koschinsky A et al (2007) Young volcanism and related hydrothermal activity at 5 S on the slow-spreading southern Mid-Atlantic Ridge. Geochem Geophys Geosyst 8(11):Q11002

    Article  CAS  Google Scholar 

  • Haase KM, Koschinsky A, Petersen S et al (2009) Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′S. Mar Geol 266(1–4):52–64

    Article  Google Scholar 

  • Hessler RR, Ingram CL, Aristides-Yayanos A et al (1978) Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Res I 25:1029–1030

    Article  Google Scholar 

  • Higgs ND, Little CTS, Glover AG (2011) Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and paleoanthropology. Proc R Soc B 278(1702):9–17

    Article  PubMed  Google Scholar 

  • Higgs ND, Gates AR, Jones DO (2014) Fish food in deep sea: revisiting the role of large food-falls. PLoS One 9(5):e96016. https://doi.org/10.1371/journal.pone.0096016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilário A, Cunha MR, Génio L et al (2015) First clues on the ecology of whale falls in the deep Atlantic Ocean: results from an experiment using cow carcasses. Mar Ecol 36(S1):82–90

    Article  Google Scholar 

  • Hovland M (2002) On the self-sealing nature of marine seeps. Cont Shelf Res 22:2387–2394

    Article  Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages. Graham and Trotman, London, 293 p

    Google Scholar 

  • Hovland M, Thomsen E (1989) Hydrocarbon-based communities in the North Sea? Sarsia 74:29–42

    Article  Google Scholar 

  • IWC (International Whaling Commission) (2013) Report of the Sub-Committee on in-depth assessments. Annex G J Cetacean Res Manage 14(suppl):192–213

    Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725

    Article  CAS  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific Sea floor spreading centers. Bioscience 29(10):592–598

    Article  CAS  Google Scholar 

  • Jenkins RG, Kaim A, Sato K et al (2017) Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontol Pol 62(4):683–690

    Google Scholar 

  • Jones JJ, Johnson SB, Rouse GW et al (2008) Marine worms (genus Osedax) colonize cow bones. Proc R Soc B 275:387–391

    Article  PubMed  Google Scholar 

  • Jones DOB, Walls A, Clare M et al (2014) Asphalt mounds and associated biota on the Angolan margin. Deep-Sea Res I 94:124–136

    Article  CAS  Google Scholar 

  • Kalenitchenko D, Péru E, Pereira LC et al (2018) The early conversion of deep-sea wood falls into chemosynthetic hotspots revealed by in situ monitoring. Sci Rep 8:907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl DM, Wirsen CO, Jannasch HW (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science 207(4437):1345–1347

    Article  CAS  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  CAS  PubMed  Google Scholar 

  • Kennicutt MC II, Brooks JM, Bidigare RR et al (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature 317:351–353

    Article  CAS  Google Scholar 

  • Kiel S (2016) A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proc R Soc B 283:20162337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiel S (2017) Reply to Smith et al.: Network analysis reveals connectivity patterns in the continuum of reducing ecosystems. Proc R Soc B 284:20171644

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiel S, Khl W-A, Goedert JL (2011) Osedax borings in fossil marine bird bones. Naturwissenschaften 98:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kowsmann RO, Carvalho MD (2002) Erosional event causing gas-venting on the upper continental slope, Campos Basin, Brazil. Cont Shelf Res 22:2345–2354

    Article  Google Scholar 

  • Krogh A (1934) Conditions of life at great depths in the ocean. Ecol Monogr 4:430–439

    Article  CAS  Google Scholar 

  • Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46

    Google Scholar 

  • Levin LA, Orphan VJ, Rouse GW et al (2012) A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proc R Soc B 279:2580–2588

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodi L, Siciliano S, Bellini C (1996) Ocorrências e conservação de baleias-francas-do-sul, Eubalaena australis, no litoral do Brasil. Pap Avulsos Zool Sao Paulo 39(17):307–328

    Google Scholar 

  • Londsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal Res vents at oceanic spreading centers. Deep-Sea Res 24:857–858

    Article  Google Scholar 

  • Lorion J, Duperron S, Gros O et al (2009) Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proc Biol Sci 276:177–185

    PubMed  Google Scholar 

  • Lorion J, Kiel S, Faure B et al (2013) Adaptive radiation of chemosymbiotic deep-sea mussels. Proc R Soc B 280:20131243

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundsten L, Schlining KL, Frasier K et al (2010a) Times-series analysis of six whale-fall communities in Monterey Canyon, California, USA. Deep-Sea Res I 57:1573–1584

    Article  Google Scholar 

  • Lundsten L, Paull CK, Schlining KL et al (2010b) Biological characterization of a whale-fall near Vancouver Island, British Columbia, Canada. Deep-Sea Res I 57:918–922

    Article  Google Scholar 

  • MacDonald IR, Reilly JF, Guinasso NL et al (1990) Chemosynthetic mussels at a brine-filled pockmark in the Northern Gulf of Mexico. Science 248:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • MacDonald IR, Bohrmann G, Escobar E et al (2004) Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Mäder A, Sander M, Casa G Jr (2010) Ciclo sazonal de mortalidade do pinguim-de-magalhães, Spheniscus magellanicus influenciado por fatores antrópicos e climáticos na costa do Rio Grande do Sul, Brasil. Rev Bras Ornitol 18:228–233

    Google Scholar 

  • Mahiques MM, Schattner U, Lazar M et al (2017) An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: spatial analysis and its relationship with salt diapirism. Heliyon 3:e00257

    Article  PubMed  PubMed Central  Google Scholar 

  • Mané-Garzon F, Montero R (1985) Sobre una nueva forma de verma tubicola Lamellibrachia victori n.sp. (Vestimentifera) proposicion de un nuevo phyllum: Mesoneurophora. Rev Biol Uruguay 8(1):1–28

    Google Scholar 

  • Martins LR, Martins IR, Urien CM (2003) Aspectos sedimentares da plataforma continental na área de influência do Rio de La Plata. Gravel 1:68–80

    Google Scholar 

  • Maser C, Sedell JR (1994) From the forest to the sea, the ecology of wood in streams, rivers, estuaries, and oceans. St. Lucie Press, Delray Beach. xv+200 p

    Google Scholar 

  • McClain C, Barry J (2014) Beta-diversity on deep-sea wood falls reflects gradients in energy availability. Biol Lett 10:20140129

    Article  PubMed  PubMed Central  Google Scholar 

  • McMullin ER, Hourdez S, Schaeffer SW et al (2003) Phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34:1–41

    Google Scholar 

  • McMullin ER, Nelson K, Fisher CR et al (2010) Population structure of two deep sea tubeworms, Lamellibrachia luymesi and Seepiophilla jonesi, from the hydrocarbon seeps of the Gulf of Mexico. Deep-Sea Res I 57:1499–1509

    Article  CAS  Google Scholar 

  • Medina-Silva R, Oliveira RR, Trindade FJ et al (2018) Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water. Antonie Van Leeuwenhoek 111:533–550

    Article  PubMed  Google Scholar 

  • Miglietta MP, Hourdez S, Cowart DA et al (2010) Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes. Deep-Sea Res II 57:1916–1925

    Article  CAS  Google Scholar 

  • Miller DJ, Ketzer JM, Viana AR et al (2015) Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Mar Petrol Geol 67:187–196

    Article  CAS  Google Scholar 

  • Miyazaki J-I, Martins LDO, Fujita Y, Matsumoto H, Fujiwara Y (2010) Evolutionary process of deep-sea Bathymodiolus mussels. PLoS One 5(4):e10363. https://doi.org/10.1371/journal.pone.0010363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma T, Wada H, Fujioka K (1996) Biological community and sediment fatty acids associated with the deep-sea whale skeleton at the Torishima seamount. J Oceanogr 52:1–15

    Article  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U et al (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seeps sediments. Proc Natl Acad Sci U S A 99(11):7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios C, Zbinden M, Baco AR et al (2006) Microbial ecology of deep-sea sunken wood: quantitative measurements of bacterial biomass and cellulolytic activities. Cah Biol Mar 47:415–420

    Google Scholar 

  • Paull CK, Hecker B, Commeau R et al (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–697

    Article  CAS  PubMed  Google Scholar 

  • Pereira OS, Shimabukuro M, Bernardino AF et al (2020) Molecular affinity of Southwest Atlantic Alvinocaris muricola with Atlantic Equatorial Bel population. Deep-Sea Res I (in press). https://doi.org/10.1016/j.dsr.2020.103343

  • Peres FV (2016) Diversidade e conectividade de comunidades bacterianas em substratos sintéticos e orgânicos no Atlântico Sudoeste profundo. Master Thesis (in Portuguese). Retried from: http://www.teses.usp.br/teses/disponiveis/42/42132/tde-19012017-115607/pt-br.php

  • Pettibone MH (1993) Polynoid polychaetes associated with a whale skeleton in the bathyal Santa Catalina Basin. Proc Biol Soc Wash 106:678–688

    Google Scholar 

  • Pinedo MC, Rosas FCW, Marmontel M (1992) Cetáceos e pinípedes do Brasil: uma revisão dos registros e guia para a identificação das espécies. UNEP/FUA. 213 p

    Google Scholar 

  • Pleijel F, Rouse GW, Ruta C et al (2008) Vrijenhoekia balaenophila, a new hesionid polychaete from a whale fall off California. Zool J Linnean Soc 152:625–634

    Article  Google Scholar 

  • Portail M, Olu K, Dubois SF et al (2016) Food-web complexity in Guaymas Basin hydrothermal vents and cold seeps. PLoS One 11(9):e0162263. https://doi.org/10.1371/journal.pone.0162263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R et al (2010) Deep. Diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899

    Article  Google Scholar 

  • Ravara A, Marçal AR, Wiklund H et al (2015) First account on the diversity of Ophryotrocha (Annelida, Dorvilleidae) from a mammal-fall in the deep-Atlantic Ocean with the description of three new species. Syst Biodivers 13(6):555–570

    Article  Google Scholar 

  • Ristova PP, Bienhold C, Wenzhöfer F et al (2017) Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PLoS One 12(1):e0169906

    Article  CAS  Google Scholar 

  • Rouse GW, Goffredi SK, Johnson SB et al (2011) Not whale-fall specialists, Osedax worms also consume fishbones. Biol Lett 7:736–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeedi H, Bernardino AF, Shimabukuro M et al (2019) Macrofaunal community structure and biodiversity patterns based on a wood-fall experiment in the deep South-west Atlantic. Deep-Sea Res. I 145:73-82

    Google Scholar 

  • Sales G, Giffoni BB, Barata PCR (2008) Incidental catch of sea turtles by the Brazilian pelagic longline fishery. J Mar Biol Assoc UK 88(04):853–864

    Article  Google Scholar 

  • Santos MCO, Siciliano S, Vicente AFC et al (2010) Cetacean records along São Paulo state coast Southeastern Brazil. Braz J Oceanogr 58(2):123–142

    Article  Google Scholar 

  • Schattner U, Lazar M, Souza LAP et al (2016) Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil. Geo-Mar Lett 36(6):457–464

    Article  Google Scholar 

  • Schmiegelow JMM, Paiva-Filho AM (1989) First record of the short-finned pilot whale, Globicephala macrorhynchus Gray, 1846, for the southwestern Atlantic. Mar Mamm Sci 1(1):1–14

    Google Scholar 

  • Secchi ER, Vaske Jr T, Santos EP (1991) Sightings and strandings of cetaceans from 1987 to 1991 in the southern Brazil. Abstracts of the Ninth Biennial Conference on the Biology of Marine Mammals. 5–9 December 1991. Chicago, USA, 62 p

    Google Scholar 

  • Shimabukuro M, Sumida PYG (2019) Diversity of bone-eating Osedax worms on the deep Atlantic whale falls – bathymetric variation and inter-basin distribution. Mar Biodivers 49:2587–2599

    Article  Google Scholar 

  • Shimabukuro M, Rizzo AE, Alfaro-Lucas JM et al (2017a) Sphaerodoropsis kitazatoi, a new species and the first record of Sphaerodoridae (Annelida: Phyllodocida) in SW Atlantic abyssal sediments around a whale carcass. Deep-Sea Res II 146:18–26

    Article  Google Scholar 

  • Shimabukuro M, Santos CSG, Alfaro-Lucas JM et al (2017b) A new eyeless species of Neanthes (Annelida: Nereididae) associated with a whale-fall community from the deep Southwest Atlantic Ocean. Deep-Sea Res II 146:27–34

    Article  Google Scholar 

  • Shimabukuro M, Carrerette O, Alfaro-Lucas JM et al (2019) Diversity, distribution and phylogeny of Hesionidae (Annelida) colonizing whale falls: new species of Sirsoe and connections between ocean basins. Front Mar Sci 6:478

    Article  Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567

    Article  Google Scholar 

  • Siciliano S (1997) Características da população de baleias-jubarte (Megaptera novaeangliae) na costa brasileira, com especial referência aos Bancos de Abrolhos. Master thesis (in Portuguese). Universidade Federal Rural do Rio de Janeiro, Instituto de Biologia. xvi+113 p

    Google Scholar 

  • Signorelli JH, Crespo E (2017) First record of the genus Adipicola (Mollusca: Bivalvia: Mytilidae) and description of a new species from the Argentine SW Atlantic Ocean. Zootaxa 4318:325–338. https://doi.org/10.11646/zootaxa.4318.2.6

    Article  Google Scholar 

  • Signorelli J, Pastorino G (2015) A new species of Laubericoncha (Bivalvia: Vesicomyidae) from deep waters off Argentina. Malacologia 58(1–2):349–360

    Article  Google Scholar 

  • Silva MB, Godoy T (2010) Avistagens oceânicas de cetáceos entre Natal e a Reserva Biológica do Atol das Rocas/RN. In: Abstracts of the XIV Reunião de Trabalho (RT) de Especialistas em Mamíferos Aquáticos da América do Sul, 2010. SOLAMAC, Florianópolis

    Google Scholar 

  • Silva CF, Shimabukuro M, Alfaro-Lucas JM et al (2016) A new Capitella polychaete worm (Annelida: Capitellidae) living inside whale bones in the abyssal South Atlantic. Deep-Sea Res I 108:23–31

    Article  Google Scholar 

  • Smith CR (1985) Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa Catalina basin floor. Deep-Sea Res A 32(4):417–442

    Article  Google Scholar 

  • Smith CR (2006) Bigger is better: the role of whales as detritus in marine ecosystems. In: Estes JA, DeMaster DF, Doak TM, Williams RL, Brownell J (eds) Whales, whaling and ocean ecosystems. University of California Press, Berkeley, pp 286–300

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Smith CR, Kukert H, Wheatcroft RA et al (1989) Vent fauna on whale remains. Nature 341:27–28

    Article  Google Scholar 

  • Smith CR, Hoover DJ, Doan SE et al (1996) Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Deep-Sea Res II 43(4–6):1309–1338

    Article  Google Scholar 

  • Smith CR, Baco AR, Glover AG (2002) Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities. Cah Biol Mar 43:293–297

    Google Scholar 

  • Smith CR, Bernardino AF, Baco A et al (2014a) Seven-year enrichment: macrofaunal succession in deep-sea sediments around a 30 tonne whale fall in the Northeast Pacific. Mar Ecol Prog Ser 515:133–149

    Article  Google Scholar 

  • Smith KE, Thatje S, Singh H et al (2014b) Discovery of a recent, natural whale fall on the continental slope off Anvers Island, western Antarctic Peninsula. Deep-Sea Res I 90:76–80

    Article  Google Scholar 

  • Smith CR, Glover AG, Treude T et al (2015) Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution. Annu Rev Mar Sci 7:10.1–10.6

    Article  Google Scholar 

  • Smith CR, Amon DJ, Higgs ND et al (2017) Data are inadequate to test whale falls as chemosynthetic stepping-stones using network analysis: faunal overlaps do support a stepping-stone role. Proc R Soc B 284:20171281

    Article  PubMed  PubMed Central  Google Scholar 

  • Southward EC (1968) On a new genus of Pogonophora from the western Atlantic Ocean, with descriptions of two new species. Bull Mar Sci 18(1):182–190

    Google Scholar 

  • Southward EC (1991) Three new species of Pogonophora, including two vestimentiferans, from hydrothermal sites in the Lau Back-arc Basin (Southwest Pacific Ocean). J Nat Hist 25(4):859–881

    Article  Google Scholar 

  • Southward EC, Southward AJ (1967) The distribution of Pogonophora in the Atlantic Ocean. Symp Zool Soc Lond 16:145–158

    Google Scholar 

  • Souza BHM (2018) Gastropod fauna on organic falls at the Southwest Atlantic deep-sea. Master thesis. Retried from: https://teses.usp.br/teses/disponiveis/21/21134/tde-05022019-165543/pt-br.php

  • Souza BHM, Passos FD, Shimabukuro M et al (2020) An integrative approach distinguishes three new species of Abyssochrysoidea (Mollusca: Caenogastropoda) associated with organic falls of the deep south-west Atlantic. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa059

    Google Scholar 

  • Stakes DS, Orange D, Paduan JB et al (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Article  CAS  Google Scholar 

  • Stockton WL, DeLaca TE (1982) Food falls in the deep sea: occurrence, quality and significance. Deep-Sea Res I 29:157–169

    Article  Google Scholar 

  • Sumida PYG, Yoshinaga MY, Madureira LAS-P et al (2004) Seabed pockmarks associated with Deepwater corals on SE Brazilian continental slope, Santos Basin. Mar Geol 207:159–167

    Article  Google Scholar 

  • Sumida PYG, Alfaro-Lucas JM, Shimabukuro M et al (2016) Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean. Sci Rep 6:22139. https://doi.org/10.1038/srep22139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers M, Pleijel F, Rouse GW (2015) Whale falls, multiple colonization of the deep, and the phylogeny of Hesionidae (Annelida). Invert Syst 29:105–123

    Article  Google Scholar 

  • Ta K, Peng X, Chen S et al (2017) Hydrothermal nontronite formation associated with microbes from low-temperature diffuse hydrothermal vents at the South Mid-Atlantic Ridge. J Geophys Res Biogeosci 122:2375–2392

    Article  CAS  Google Scholar 

  • Taylor MH, Dillon WP, Pecher IA (2000) Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Mar Geol 164:79–89

    Article  CAS  Google Scholar 

  • Teixeira S, Olu K, Decker C et al (2013) High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt, efficient dispersal mechanism or questionable endemism? Mol Ecol 22:4663–4680

    Article  PubMed  Google Scholar 

  • Thiel H (1979) Structural aspects of the deep-sea benthos. Ambio Spec Rep 6:25–31

    Google Scholar 

  • Tomasini J, Santa Ana H, Conti B et al (2011) Assessment of marine gas hydrates and associated free gas distribution offshore Uruguay. J Geophys Res 2011:1–7

    Google Scholar 

  • Tommasi LR (1970) On two new species of Pogonophora from the southwestern Atlantic Ocean. Pap Avul Zool 23(12):115–119

    Google Scholar 

  • Treude T, Smith CR, Wenshafer F et al (2009) Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Mar Ecol Prog Ser 382:1–21

    Article  CAS  Google Scholar 

  • Tunnicliffe V, Juniper SK (1990) Cosmopolitan underwater fauna. Nature 344:300

    Article  Google Scholar 

  • Tunnicliffe V, Juniper SK, Sibuet M (2003) Chapter 4: Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosystems of the world, Elsevier Science, Amsterdam, Netherlands, pp 81–110

    Google Scholar 

  • Turner RD (1973) Wood-boring bivalves, opportunistic species in the deep sea. Science 180(4093):1377–1379

    Article  CAS  PubMed  Google Scholar 

  • Turner RD (1977) Wood, mollusks, and deep-sea food chains. Bull Am Malacol Union 1976:13–19

    Google Scholar 

  • Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Chichester, 424 p

    Google Scholar 

  • Van Dover CL, German CR, Speer KG et al (2002) Evolution and biogeography of Dee-Sea vent and seep invertebrates. Science 295:1253–1257

    Article  PubMed  Google Scholar 

  • Vetter EW, Dayton PK (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Res II 45(1–3):25–54

    Article  Google Scholar 

  • Watson C, Carvajal JI, Sergeeva NG et al (2016) Free-living calamyzin chrysopetalids (Annelida) from methane seeps, anoxic basins, and whale falls. Zool J Linnean Soc 177:700–719

    Article  Google Scholar 

  • Wedekin LL, Rossi-Santos MR, Baracho C et al (2014) Cetacean records along a coastal-offshore gradient in the Vitória-Trindade Chain, western South Atlantic Ocean. Braz J Biol 74(1):137–144

    Article  CAS  PubMed  Google Scholar 

  • Wiklund H, Glover AG, Johannessen PJ et al (2009a) Cryptic speciation at organic-rich marine habitats: a new bacteriovore annelid from whale-fall and fish farms in the North-East Atlantic. Zool J Linnean Soc 155:774–785

    Article  Google Scholar 

  • Wiklund H, Glover AG, Dahlgren TG (2009b) Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in the North-East Atlantic. Zootaxa 2228:43–56

    Article  Google Scholar 

  • Wiklund H, Altamira IR, Glover AG et al (2012) Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall in the North-East Pacific. Syst Biodivers 10(2):243–259

    Article  Google Scholar 

  • Williamson GR (1975) Minke whales off Brazil. Sci Rep Whales Res Inst 27:37–59

    Google Scholar 

  • Wolff T (1979) Macrofaunal utilization of plant remains in the deep sea. Sarsia 64(1–2):117–143

    Article  Google Scholar 

  • Zerbini AN, Kotas JE (1998) A note on cetacean bycatch in pelagic driftnetting off Southern Brazil. Rep Int Whal Commn 48:519–524

    Google Scholar 

  • Zerbini AN, Secchi ER, Siciliano S et al (1996) The dwarf form of the minke whale (Balaenoptera acutorostrata, Lacépède, 1804) in Brazil. Rep Int Whal Commn 46:333–340

    Google Scholar 

  • Zerbini AN, Secchi ER, Siciliano S et al (1997) A review of the occurrence and distribution of whales of the genus Balaenoptera along the Brazilian coast. Rep Int Whal Commn 47:407–417

    Google Scholar 

  • Zerbini AN, da Rocha JM, Andriolo A et al (1999) Report of a sighting survey conducted on the former Brazilian whaling ground off the Northeastern coast of Brazil. Paper SC/51/O10 presented at 51ª Meeting of International Whaling Commission, 16 p

    Google Scholar 

  • Zerbini AN, Andriolo A, Heide-Jørgensen MP et al (2006) Satellite-monitored movements of humpback whales Megaptera novaeangliae in the Southwest Atlantic Ocean. Mar Ecol Prog Ser 313:295–304

    Article  Google Scholar 

Download references

Acknowledgments

We thank the FAPESP (São Paulo Research Foundation) to financial support grant 2011/50185-1 to PYGS in BIOTA-FAPESP program (Research Program on Biodiversity Characterization, Conservation, Restoration and Sustainable Use) and grant 2014/08266-2 to MMM. We wish to thank Marcelo Kitahara who collected the Lamellibrachia cf. luymesi in Pelotas Basin. We also are indebted to the captains and crews of the R/V Alpha-Crucis and Alpha Delphini and Dr. Marcos C.O. Santos (IOUSP) for helping with permits to collect stranded animal bones. MS acknowledges CAPES/Proex (Brazilian Federal Agency for Support and Evaluation of Graduate Education) for providing a PhD scholarship. JMAL and RBC thank CNPq MSc scholarship (133178/2013-7 and 130032/2018-2, respectively). PYGS, AFB, and MM de M were benefitted from CNPq research productivity fellowships (grants 301089/2016-7, 301161/2017-8, 303132/2014-0, respectively). MM de M acknowledges the FAPESP for grants 2010/06147-5 and 2016/22194-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Shimabukuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimabukuro, M., Alfaro-Lucas, J.M., Bernardino, A.F., Ramos, R.B., de Mahiques, M.M., Sumida, P.Y.G. (2020). Chemosynthetic Ecosystems on the Brazilian Deep-Sea Margin. In: Sumida, P.Y.G., Bernardino, A.F., De Léo, F.C. (eds) Brazilian Deep-Sea Biodiversity. Brazilian Marine Biodiversity . Springer, Cham. https://doi.org/10.1007/978-3-030-53222-2_5

Download citation

Publish with us

Policies and ethics