Skip to main content

Removal of Dyes and Heavy Metals with Clays and Diatomite

  • Chapter
  • First Online:
Water Pollution and Remediation: Heavy Metals

Abstract

In recent years, many researches are focused to use clay and diatomaceous earth like the most and the effective solution to reduce this problem, thanks for their abundance, the cheapness, and the important surface area. This chapter aims to discuss the removal of organic and inorganic pollutants such as dyes (methyl orange, indigo carmine, phenol red, acid brown 75, basic yellow 28, etc.) and heavy metal ions (such as Zn (II), Cd (II), Pb (II), Ni (II), Cr (II), etc.) from water by adsorption on clays and diatomaceous earth. The application of chemical and physical modifications of the functional groups of clay and diatomite enhance their adsorption capacities. The kinetics and the models used to describe the adsorption processes are discussed. The reported results for a variety of clays and diatomite derivatives showed that these materials could be applied successfully for the removal of dyes and heavy metals from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel A (2017) The history of dyes and pigments, second Edi. Ed, colour design. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-101270-3.00024-2

  • Abou-El-Sherbini KS, Hassanien MM (2010) Study of organically-modified montmorillonite clay for the removal of copper(II). J Hazard Mater 184(1–3):654–661

    Article  CAS  PubMed  Google Scholar 

  • Abukhadra MR, Bakry BM, Adlii A, Yakout SM, El-Zaidy MA (2019a) Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water. J Hazard Mater 374:296–308. https://doi.org/10.1016/j.jhazmat.2019.04.047

    Article  CAS  PubMed  Google Scholar 

  • Abukhadra MR, Sayed MA, Rabie AM, Ahmed SA (2019b) Surface decoration of diatomite by Ni/NiO nanoparticles as hybrid composite of enhanced adsorption properties for malachite green dye and hexavalent chromium. Colloids Surf A Physicochem Eng Asp 577:583–593. https://doi.org/10.1016/j.colsurfa.2019.06.018

    Article  CAS  Google Scholar 

  • Akpomie KG, Dawodu FA (2018) Efficient abstraction of nickel(II) and manganese(II) ions from solution onto an alkaline-modified montmorillonite. J Taibah Univ Sci 8(4):343–356

    Article  Google Scholar 

  • Al-Degs YS, Tutunju MF, Shawabkeh RA (2000) The feasibility of using diatomite and Mn–Diatomite for remediation of Pb, Cu, and Cd from water. Sep Sci Technol 35(14):2299–2310

    Article  CAS  Google Scholar 

  • Al-Degs Y, Khraisheh MAM, Tutunji MF (2001) Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res 35:3724–3728. https://doi.org/10.1016/S0043-1354(01)00071-9

    Article  CAS  PubMed  Google Scholar 

  • Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manag 69(3):229–238

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Khraisheh MAM, Ahmad MNM, Allen S (2009) Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study. J Hazard Mater 165(1–3):589–598

    Article  CAS  PubMed  Google Scholar 

  • Allam K, Gourai K, Belhorma B, Bih L (2018) Adsorption of methylene blue on raw and activated clay: case study of Bengurir Clay. J Mater Environ Sci 2508(6):1750–1761

    Google Scholar 

  • Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2015.03.003

  • Anna B, Kleopas M, Constantine S, Anestis F, Maria B (2015) Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environ Earth Sci 73(9):5435–5444

    Article  CAS  Google Scholar 

  • Appannagari RR (2018) North Asian international research journal of environmental pollution causes and consequences: a study. North Asian Int Res J Soc Sci Humanit 3:2454–9827

    Google Scholar 

  • Arik H (2003) Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite. J Eur Ceram Soc 23:2005–2014. https://doi.org/10.1016/S0955-2219(03)00038-4

    Article  CAS  Google Scholar 

  • Auta M, Hameed BH (2013) Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. J Ind Eng Chem 19(4):1153–1161

    Article  CAS  Google Scholar 

  • Azzam EMS, Eshaq G, Rabie AM, Bakr AA, Abd-Elaal AA, El Metwally AE, Tawfik SM (2016) Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. Int J Biol Macromol 89:507–517

    Article  CAS  PubMed  Google Scholar 

  • Bagbi Y, Pandey A, Solanki PR (2018) Electrospun nanofibrous filtration membranes for heavy metals and dye removal, nanoscale materials in water purification. Elsevier Inc. https://doi.org/10.1016/b978-0-12-813926-4.00015-x

  • Baker ML, Baas JH, Malarkey J, Jacinto RS, Craig MJ, Kane IA, Barker S (2017) The effect of clay type on the properties of cohesive sediment gravity flows and their deposits. J Sediment Res 87(11):1176–1195

    Article  CAS  Google Scholar 

  • Bello OS, Adegoke KA, Oyewole RO (2014) Insights into the adsorption of heavy metals from wastewater using diatomaceous earth. Sep Sci Technol 49:1787–1806. https://doi.org/10.1080/01496395.2014.910223

    Article  CAS  Google Scholar 

  • Bendaho D, Driss TA (2015) Removal of cationic dye methylene blue from aqueous solution by adsorption on Algerian Clay. Int J Waste Resour 5(1):1–6

    Google Scholar 

  • Bennedsen LR (2014) In situ chemical oxidation, chemistry of advanced environmental purification processes of water. The mechanisms and applications of chemical oxidants for remediation purposes. https://doi.org/10.1016/b978-0-444-53178-0.00002-x

  • Bentahar S, Dbik A, El Khomri M, El Messaoudi N, Lacherai A (2018) Removal of a cationic dye from aqueous solution by natural clay. Groundw Sustain Dev 6:255–262

    Article  Google Scholar 

  • Bertagnolli C, Kleinübing SJ, da Silva MGC (2011) Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds. Appl Clay Sci 53(1):73–79

    Article  CAS  Google Scholar 

  • Caliskan N, Kul AR, Alkan S, Sogut EG, Alacabey I (2011) Adsorption of zinc (II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study. J Hazard Mater 193:27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058

    Article  CAS  PubMed  Google Scholar 

  • Caner N, Sarl A, Tüzen M (2015) Adsorption characteristics of mercury(II) ions from aqueous solution onto chitosan-coated diatomite. Ind Eng Chem Res 54:7524–7533. https://doi.org/10.1021/acs.iecr.5b01293

    Article  CAS  Google Scholar 

  • Chaari I, Fakhfakh E, Medhioub M, Jamoussi F (2019) Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J Mol Struct 1179:672–677. https://doi.org/10.1016/j.molstruc.2018.11.039

    Article  CAS  Google Scholar 

  • Cheknane B, Bouras O, Baudu M, Basly J-P, Cherguielaine A (2010) Granular inorgano-organo pillared clays (GIOCs): preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions. Chem Eng J 158(3):528–534

    Article  CAS  Google Scholar 

  • Chisvert A, Miralles P, Salvador A (2017) Hair dyes in cosmetics: regulatory aspects and analytical methods. In: Analysis of cosmetic products, 2nd edn. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63508-2.00008-4

  • Christidis GE (2011) Industrial clays. European Mineralogical Union Notes in Mineralogy 9(1):341–414

    Google Scholar 

  • Dai H, Huang Y, Zhang Y, Zhang H, Huang H (2019) Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose 26:3825–3844. https://doi.org/10.1007/s10570-019-02283-6

    Article  CAS  Google Scholar 

  • Danková Z, Bekényiová A, Å tyriaková I, Fedorová E (2015) Study of cu(II) adsorption by siderite and kaolin. Proc Earth Planet Sci 15:821–826. https://doi.org/10.1016/j.proeps.2015.08.131

    Article  CAS  Google Scholar 

  • Dawodu FA, Akpomie KG (2014) Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J Mater Res Technol 3(2):129–141

    Article  CAS  Google Scholar 

  • Delhom CD, White-ghoorahoo LA, Pang SS (2010) Composites: part B development and characterization of cellulose/clay nanocomposites. Compos Part B 41:475–481. https://doi.org/10.1016/j.compositesb.2009.10.007

    Article  CAS  Google Scholar 

  • Dolley TP, Moyle PR (2003) History and overview of the U. S. Diatomite mining industry, with emphasis on the Western United States. Bulletin 2209E USGS Bull 2209-E 1

    Google Scholar 

  • Du Y, Wang X, Wu J, Qi C, Li Y (2018) Adsorption and photoreduction of Cr(VI) via diatomite modified by Nb2O5 nanorods. Particuology 40:123–130. https://doi.org/10.1016/j.partic.2017.11.005

    Article  CAS  Google Scholar 

  • Dubinin M (1955) Surface and sorption properties of active–carbons, vol 4, pp 531–538. https://doi.org/10.1007/BF01167331

  • Elass K, Laachach A, Alaoui A, Azzi M (2011) Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Appl Clay Sci 54(1):90–96

    Article  CAS  Google Scholar 

  • El Haouti R, Ouachtak H, El Guerdaoui A, Amedlous A, Amaterz E, Haounati R, Addi AA, Akbal F, El Alem N, Taha ML (2019) Cationic dyes adsorption by Na-Montmorillonite Nano Clay: experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J Mol Liq 290:111139

    Article  CAS  Google Scholar 

  • Elmoubarki R, Mahjoubi FZ, Tounsadi H, Moustadraf J, Abdennouri M, Zouhri A, El Albani A, Barka N (2015) Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics. Water Resour Ind 9:16–29

    Article  Google Scholar 

  • ElSayed EE (2018) Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study). Water Sci 32:32–43. https://doi.org/10.1016/j.wsj.2018.02.001

    Article  Google Scholar 

  • Ely A, Baudu M, Basly J, Ould M, Ahmed S, Kankou O (2009) Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules. J Hazard Mater 171:405–409. https://doi.org/10.1016/j.jhazmat.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  • Ely A, Baudu M, Ould M, Ahmed S, Kankou O, Basly J (2011) Copper and nitrophenol removal by low cost alginate/Mauritanian clay composite beads. Chem Eng J 178:168–174. https://doi.org/10.1016/j.cej.2011.10.040

    Article  CAS  Google Scholar 

  • Flores-Cano JV, Leyva-Ramos R, Padilla-Ortega E, Mendoza-Barron J (2013) Adsorption of heavy metals on diatomite: mechanism and effect of operating variables. Adsorpt Sci Technol 31:275–291. https://doi.org/10.1260/0263-6174.31.2-3.275

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–471. https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  • Fröse A, Schmidtke K, Sukmann T, Juhász Junger I, Ehrmann A (2019) Application of natural dyes on diverse textile materials. Optik (Stuttg) 181:215–219. https://doi.org/10.1016/j.ijleo.2018.12.099

    Article  CAS  Google Scholar 

  • Fu, Feng, Ziwei Gao, Lingxiang Gao, Dongsheng Li (2011) Effective adsorption of anionic dye, Alizarin Red S, from aqueous solutions on activated clay modified by iron oxide.: 9712–9717

    Google Scholar 

  • Gamoudi S, Srasra E (2019) Adsorption of organic dyes by HDPy þ -modi fi ed clay: effect of molecular structure on the adsorption. J Mol Struct 1193:522–531. https://doi.org/10.1016/j.molstruc.2019.05.055

    Article  CAS  Google Scholar 

  • Giese RF (2008). The surface thermodynamic properties of clay minerals. (August 2015): 33–33

    Google Scholar 

  • Gogoi J, Choudhury AD, Chowdhury D (2019) Graphene oxide clay nanocomposite as an efficient photo-catalyst for degradation of cationic dye. Mater Chem Phys 232:438–445. https://doi.org/10.1016/j.matchemphys.2019.05.010

    Article  CAS  Google Scholar 

  • Gohil JM, Choudhury RR (2018) Introduction to nanostructured and Nano-enhanced polymeric membranes: preparation, function, and application for water purification, nanoscale materials in water purification. Elsevier Inc. https://doi.org/10.1016/b978-0-12-813926-4.00038-0

  • Gök, Mehmet Koray, Gamze Güçlü (2013) Removal of basic dye from aqueous solutions using a novel nanocomposite hydrogel: N -Vinyl 2-Pyrrolidone/Itaconic Acid/Organo Clay

    Google Scholar 

  • Goren R, Baykara T, Marsoglu M (2002) Effects of purication and heat treatment on pore structure and composition of diatomite, vol 101, pp 177–180

    Google Scholar 

  • Gualtieri AF, Ferrari S, Leoni M, Grathoff G, Hugo R, Shatnawi M, Paglia G, Billinge S (2008) Structural characterization of the clay mineral illite-1M. J Appl Crystallogr 41(2):402–415. https://doi.org/10.1107/S0021889808004202

    Article  CAS  Google Scholar 

  • Guerra DJL, Mello I, Resende R, Silva R (2013) Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: equilibrium, kinetic, pH, and thermodynamic effects. Water Resour Ind 4:32–50

    Article  Google Scholar 

  • Hai Y et al (2015) Modification of acid-activated kaolinite with TiO 2 and its use for the removal of Azo dyes. Appl Clay Sci 114:558–567

    Article  CAS  Google Scholar 

  • Hasn I, Ahmad R (2018) A facile synthesis of poly (methyl methacrylate) grafted alginate@Cys-bentonite copolymer hybrid nanocomposite for sequestration of heavy metals. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2018.09.003

  • Hassani A, Khataee AR (2016) Activated carbon fiber for environmental protection, activated carbon Fiber and textiles. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100660-3.00010-9

  • Hassani A, Darvishi Cheshmeh Soltani R, KıranÅŸan M, Karaca S, Karaca C, Khataee A (2016) Ultrasound-assisted adsorption of textile dyes using modified nanoclay: central composite design optimization. Korean J Chem Eng 33(1):178–188

    Article  CAS  Google Scholar 

  • Heiba HF, Taha AA, Mostafa AR, Mohamed LA, Fahmy MA (2020) Preparation and characterization of novel mesoporous chitin blended MoO3-montmorillonite nanocomposite for cu(II) and Pb(II) immobilization. Int J Biol Macromol 152:554–566. https://doi.org/10.1016/j.ijbiomac.2020.02.254

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Zoroufi S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72(6):1339–1363

    Article  CAS  Google Scholar 

  • Hu Y, Chen C, Yang L, Cui J, Hao Q, Sun D (2019) Handy purifier based on bacterial cellulose and ca-montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr Polym 222:115017. https://doi.org/10.1016/j.carbpol.2019.115017

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SS, Selim AQ (2012) Heat treatment of natural diatomite. Physicochem Probl MI 48(2):413–424

    CAS  Google Scholar 

  • Islem C, Kamel J, Emna F, Fakher J, Adel M (2016) Use of Tunisian raw clay to remove dye from aqueous solution. Arab J Geosci 9(10)

    Google Scholar 

  • Kameda T, Honda R, Kumagai S, Saito Y, Yoshioka T (2019) Uptake of heavy metal cations by chitosan-modified montmorillonite: kinetics and equilibrium studies. Mater Chem Phys 236:121784. https://doi.org/10.1016/j.matchemphys.2019.121784

    Article  CAS  Google Scholar 

  • Kamel S (2018) Biodegradable grafting cellulose/clay composites for metal ions removal. Int J Biol Macromol 118:2256–2264. https://doi.org/10.1016/j.ijbiomac.2018.07.105

    Article  CAS  PubMed  Google Scholar 

  • Kan T, Jiang X, Zhou L, Yang M, Duan M, Liu P, Jiang X (2011) Removal of methyl orange from aqueous solutions using a bentonite modified with a new gemini surfactant. Appl Clay Sci 54(2):184–187

    Article  CAS  Google Scholar 

  • Kasiri MB (2018) Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater. In: The impact and prospects of green chemistry for textile technology. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102491-1.00014-9

  • Kaur K, Jindal R (2018) Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents. J Environ Chem Eng 6:7091–7101. https://doi.org/10.1016/j.jece.2018.09.065

    Article  CAS  Google Scholar 

  • Kausar A, Naeem K, Hussain T, Nazli Z-i-H, Bhatti HN, Jubeen F, Nazir A, Iqbal M (2019) Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: comparison of linear and non-linear regression methods. J Mater Res Technol 8(1):1161–1174

    Article  CAS  Google Scholar 

  • Kennedy JU, Murthy ZVP, Mallapur VP, Aa MIC (2010) Comptes Rendus Chimie removal of cu (II) and Zn (II) from industrial wastewater by acid-activated montmorillonite-illite type of clay. Comptes rendus – Chim 13:1359–1363. https://doi.org/10.1016/j.crci.2010.05.024

    Article  CAS  Google Scholar 

  • Khan U, Khan Rao RA (2017) Dactyloctenium aegyptium biomass (DAB)-MMT nano-composite: synthesis and its application for the bio-sorption of Cu(II) ions from aqueous solution. Process Saf Environ Prot 111:409–419

    Article  CAS  Google Scholar 

  • Khan MN, Biswas S, Choudhury TR, Commission E (2017) Preparation and characterization of bijoypur clay- crystalline cellulose composite for application as an adsorbent. https://doi.org/10.15761/AMS.1000126

  • Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39:922–932. https://doi.org/10.1016/j.watres.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Tripathi KM (2019) Synthesis of clay- cellulose biocomposite for the removal of toxic metals ions. https://doi.org/10.1016/j.jhazmat.2019.120871

  • Kong Y, Wang L, Ge Y, Su H, Li Z (2019) Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. J Hazard Mater:33–41. https://doi.org/10.1016/j.jhazmat.2019.01.026

  • Kooli F, Liu Y, Al-Faze R, Al Suhaimi A (2015) Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl Clay Sci 116-117:23–30

    Article  CAS  Google Scholar 

  • Koyuncu M (2012) Colour removal from aqueous solution of tar-chromium green 3G dye using natural diatomite. Physicochem Probl MI 48(2):485–494

    CAS  Google Scholar 

  • Kumar ASK, Kalidhasan S, Rajesh V, Rajesh N (2012) Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind Eng Chem Res 51(1):58–69

    Article  CAS  Google Scholar 

  • Labidi A, Salaberria AM, Fernandes SCM, Labidi J, Abderrabba M (2016) Adsorption of copper on chitin-based materials: kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 65:140–148. https://doi.org/10.1016/j.jtice.2016.04.030

    Article  CAS  Google Scholar 

  • Labidi A, Salaberria AM, Fernandes SCM, Labidi J, Abderrabba M, Labidi A, Salaberria AM, Fernandes SCM, Labidi J (2019) Microwave assisted synthesis of poly (N – vinylimidazole) grafted chitosan as an effective adsorbent for mercury (II) removal from aqueous solution: equilibrium, kinetic, thermodynamics and regeneration studies. J Dispers Sci Technol 0:1–13. https://doi.org/10.1080/01932691.2019.1614025

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(2):1361–1403. https://doi.org/10.1021/ja02242a004

  • Li Y, Xiao H, Chen M, Song Z, Zhao Y (2014) Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal. J Mater Sci 49:6696–6704. https://doi.org/10.1007/s10853-014-8270-8

    Article  CAS  Google Scholar 

  • Li Z, Potter N, Rasmussen J, Weng J, Lv G (2018) Removal of rhodamine 6G with different types of clay minerals. Chemosphere 202:127–135. https://doi.org/10.1016/j.chemosphere.2018.03.071

    Article  CAS  PubMed  Google Scholar 

  • Lichtfouse, E., Schwarzbauer, J., Robert, D., 2015. Pollutants in buildings, water and living organisms volume 7 de environmental chemistry for a sustainable world. https://doi.org/0.1007/978-3-39-19276-5

    Book  Google Scholar 

  • Liu Q, Yang B, Zhang L, Huang R (2015) Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite. Korean J Chem Eng 32(7):1314–1322

    Article  CAS  Google Scholar 

  • Liu C, Omer AM, Ouyang X k (2018) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol 106:823–833. https://doi.org/10.1016/j.ijbiomac.2017.08.084

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Wu Y, Sha H (2019) Magnesium oxide modified diatomite waste as an efficient adsorbent for organic dye removal: adsorption performance and mechanism studies. Sep Sci Technol 0:1–13. https://doi.org/10.1080/01496395.2019.1577456

    Article  CAS  Google Scholar 

  • Liva M, Muñoz-Olivas R, Kmethy B, Baldonero JL, Cámara C (2007) Diatomite earth for cadmium pre-concentration in natural waters and detection by FI-FAAS rev. CENIC Cienc Quim 38:289–295

    Google Scholar 

  • Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, Guo S, Sun K, Guo X, Wujcik EK, Guo Z (2017) Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb (II) ions. Polymer 128:12–23

    Article  CAS  Google Scholar 

  • Ma H, Yu F, Li W, Li Z, Guo W, Yao X, Tian Y (2019) Cr(VI) adsorption on acid modified diatomite. IOP Conf Ser Earth Environ Sci 267. https://doi.org/10.1088/1755-1315/267/4/042148

  • Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98(1):358–365

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodi NM, Taghizadeh A, Taghizadeh M, Azimi M (2019) Journal of environmental chemical engineering surface modi fi ed montmorillonite with cationic surfactants: preparation, characterization, and dye adsorption from aqueous solution. J Environ Chem Eng 7:103243. https://doi.org/10.1016/j.jece.2019.103243

    Article  CAS  Google Scholar 

  • Makhoukhi B, Djab M, Didi MA (2015) Adsorption of Telon dyes onto bis-imidazolium modified bentonite in aqueous solutions. J Environ Chem Eng 3(2):1384–1392

    Article  CAS  Google Scholar 

  • Miretzky P, Muñoz C, Cantoral-Uriza E (2011) Cd2+ adsorption on alkaline-pretreated diatomaceous earth: equilibrium and thermodynamic studies. Environ Chem Lett 9(1):55–63

    Article  CAS  Google Scholar 

  • Mirza A, Ahmad R (2018) Environmental technology & innovation novel recyclable (Xanthan Gum/Montmorillonite) bionanocomposite for the removal of Pb ( II ) from synthetic and Industrial wastewater. Environ Technol Inno 11:241–252. https://doi.org/10.1016/j.eti.2018.06.009

    Article  Google Scholar 

  • Mnasri-ghnimi S, Frini-srasra N (2019) Applied clay science removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci 179:105151. https://doi.org/10.1016/j.clay.2019.105151

    Article  CAS  Google Scholar 

  • Mohammed LA (2013) Adsorptive removal of dye from industrial effluents using natural iraqi palygorskite clay as low-cost adsorbent Dakhil Nassir Taha Isra’ a Sadi Samaka 2. Materials and methods. JASR 3(9):945–955. http://www.aessweb.com/pdf-files/Jasr-3(9)-945-955.pdf

    Google Scholar 

  • Mohellebi F, Lakel F (2016) Adsorption of Zn2+ on Algerian untreated bentonite clay. Desalin Water Treat 57:6051–6062. https://doi.org/10.1080/19443994.2015.1006255

    Article  CAS  Google Scholar 

  • Mullassery MD, Fernandez NB, Anirudhan TS (2014) Adsorptive removal of acid red from aqueous solutions by cationic surfactant-modified bentonite clay. Desalin Water Treat 56(7):1929–1939

    Article  CAS  Google Scholar 

  • Musso TB, Parolo ME, Pettinari G, Francisca FM (2014) Cu (II) and Zn (II) adsorption capacity of three different clay liner materials. J Environ Manag 146:50–58. https://doi.org/10.1016/j.jenvman.2014.07.026

    Article  CAS  Google Scholar 

  • Nebaghe KC, El Boundati Y, Ziat K, Naji A, Rghioui L, Saidi M (2016) Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper (II) onto treated Martil sand fluid phase equilibria comparison of linear and non-linear method for determination of optimum equilibriu. Fluid Phase Equilib 430:188–194. https://doi.org/10.1016/j.fluid.2016.10.003

    Article  CAS  Google Scholar 

  • Nefzi H, Abderrabba M, Ayadi S, Labidi J (2018) Formation of palygorskite clay from treated diatomite and its application for the removal of heavy metals from aqueous solution. Water (Switzerland) 10. https://doi.org/10.3390/w10091257

  • NeÅ¡vera J, Rucká L, Pátek M (2015) Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Adv Appl Microbiol 93:107–160. https://doi.org/10.1016/bs.aambs.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  • Olad A, Azhar FF (2014) Eco-friendly biopolymer/clay/conducting polymer nanocomposite: characterization and its application in reactive dye removal. Fiber Polym 15(6):1321–1329

    Article  CAS  Google Scholar 

  • Oladipo AA, Gazi M (2014) Enhanced removal of crystal violet by low cost alginate /acid activated Bentonite composite beads: optimization and modelling using non-linear regression technique. J Water Process Eng 2:43–52

    Article  Google Scholar 

  • Ouaddari H, Karim A, Achiou B, Saja S, Aaddane A, Bennazha J, El Amrani El Hassani I, Ouammou M, Albizane A (2019) New low-cost ultrafiltration membrane made from purified natural clays for direct red 80 dye removal. J Environ Chem Eng 7:103268. https://doi.org/10.1016/j.jece.2019.103268

    Article  CAS  Google Scholar 

  • Öztürk A, Malkoc E (2014) Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: mass transfer analysis, kinetic and equilibrium profile. Appl Surf Sci 299:105–115

    Article  CAS  Google Scholar 

  • Pandey S, Mishra SB (2011) Journal of colloid and interface science organic – inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361:509–520. https://doi.org/10.1016/j.jcis.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Xie H, Liu H, Cai P, Xiao H (2019) Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems. Bioresour Technol 286:121366

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  • Peng S, Mao T, Zheng C, Wu X, Wei Y, Zeng Z, Xiao R, Sun Y (2019) Polyhydroxyl gemini surfactant-modified montmorillonite for efficient removal of methyl orange. Colloids Surf A Physicochem Eng Asp 578:123602

    Article  CAS  Google Scholar 

  • Phothitontimongkol T, Siebers N, Sukpirom N, Unob F (2009) Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution. Appl Clay Sci 43(3–4):343–349

    Article  CAS  Google Scholar 

  • Prasad MNV (2019) Prospects for manipulation of molecular mechanisms and transgenic approaches in aquatic macrophytes for remediation of toxic metals and metalloids in wastewaters. transgenic Plant Technology for Remediation of toxic metals and metalloids. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814389-6.00019-5

  • Putro JN, Santoso SP, Ismadji S, Ju Y (2017) Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose –bentonite nanocomposite: improvement on extended Langmuir isotherm model. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2017.03.032

  • Queiroga LN, Pereira MB, Silva LS, Silva Filho EC, Santos IM, Fonseca MG, Jaber M (2019) Microwave bentonite silylation for dye removal: Influence of the solvent. Appl Clay Sci 168:478–487

    Google Scholar 

  • Raja ASM, Arputharaj A, Saxena S, Patil PG (2019) Water requirement and sustainability of textile processing industries, water in textiles and fashion. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102633-5.00009-9

  • Rajaram R, Ganeshkumar A (2019) Anthropogenic influence of heavy metal pollution on the southeast coast of India, coastal zone management. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814350-6.00016-1

  • Rangabhashiyam S, Balasubramanian P (2018) Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresour Technol Reports 5:261–279. https://doi.org/10.1016/j.biteb.2018.07.009

    Article  Google Scholar 

  • Rather LJ, Jameel S, Dar OA, Ganie SA, Bhat KA, Mohammad F (2019) Advances in the sustainable technologies for water conservation in textile industries, water in textiles and fashion. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102633-5.00010-5

  • Redlich O (1958) A useful adsorption isotherm. J Phys. Chem 63(6):1024. https://doi.org/10.1021/j150576a611

  • Richhariya G, Kumar A, Tekasakul P, Gupta B (2017) Natural dyes for dye sensitized solar cell: a review. Renew Sust Energ Rev 69:705–718. https://doi.org/10.1016/j.rser.2016.11.198

    Article  CAS  Google Scholar 

  • Sadeghi S, Moghaddam AZ, Massinaei M (2015) Novel tunable composites based on bentonite and modified tragacanth gum for removal of acid dyes from aqueous solutions. RSC Adv 5(69):55731–55745

    Article  CAS  Google Scholar 

  • Safa M, Larouci M, Meddah B, Valemens P (2012) The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria. Water Sci Technol 65(10):1729–1737

    Article  CAS  PubMed  Google Scholar 

  • Safwat SM, Matta ME (2018) Adsorption of urea onto granular activated alumina: a comparative study with granular activated carbon. J Dispers Sci Technol 0:1–11. https://doi.org/10.1080/01932691.2018.1461644

    Article  CAS  Google Scholar 

  • Åžahin Ö, Kaya M, Saka C (2015) Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci 116-117:46–53

    Article  CAS  Google Scholar 

  • Saidi R, Tlili A, Fourati A, Ammar N, Ounis A, Jamoussi F (2012) Granulometric distribution of natural and flux calcined chert from Ypresian phosphatic series of Gafsa-Metlaoui basin compared to diatomite filter aid. IOP Conference Series: Materials Science and Engineering 28:012027

    Article  CAS  Google Scholar 

  • Salih SS, Ghosh TK (2018) Adsorption of Zn(II) ions by chitosan coated diatomaceous earth. Int J Biol Macromol 106:602–610. https://doi.org/10.1016/j.ijbiomac.2017.08.053

    Article  CAS  PubMed  Google Scholar 

  • Sarı A, Çıtak D, Tuzen M (2010) Equilibrium, thermodynamic and kinetic studies on adsorption of Sb (III) from aqueous solution using low-cost natural diatomite. Chem Eng J 162(2):521–527

    Article  CAS  Google Scholar 

  • Saxena S, Raja ASM (2015) Roadmap to sustainable textiles and clothing. https://doi.org/10.1007/978-981-287-164-0

  • Shahadat M, Azha SF, Ismail S, Shaikh ZA, Wazed SA (2018) Treatment of industrial dyes using chitosan-supported nanocomposite adsorbents, the impact and prospects of green chemistry for textile technology. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102491-1.00016-2

  • Shankaran DR (2018) Cellulose nanocrystals for health care applications. Appl Nanomat Elsevier Ltd. https://doi.org/10.1016/b978-0-08-101971-9.00015-6

  • Shawabkeh RA, Tutunji MF (2003) Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl Clay Sci 24:111–120. https://doi.org/10.1016/S0169-1317(03)00154-6

    Article  CAS  Google Scholar 

  • Shen Y, Yu X, Wang Y (2019) Facile synthesis of modified rectorite (M-REC) for effective removal of anionic dye from water. J Mol Liq 278:12–18

    Article  CAS  Google Scholar 

  • Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X (2011) Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques. Environ Sci Technol 45(18):7718–7726

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui SI, Fatima B, Tara N, Rathi G, Chaudhry SA (2018) Recent advances in remediation of synthetic dyes from wastewaters using sustainable and low-cost adsorbents. In: The impact and prospects of green chemistry for textile technology. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102491-1.00015-0

  • Sözüdo O, Fil BA, Boncukcuo R, Alada E (2015) Particulate science and technology: an international adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: isotherm, kinetic, and thermodynamic analysis. https://doi.org/10.1080/02726351.2015.1052121

  • Sun Q, Li H, Niu B, Hu X, Xu C, Zheng S (2015) Nano-TiO 2 immobilized on diatomite: characterization and photocatalytic reactivity for cu 2+ removal from aqueous solution. Procedia Eng 102:1935–1943. https://doi.org/10.1016/j.proeng.2015.01.334

    Article  CAS  Google Scholar 

  • Tan WS, Ting ASY (2014) Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution. Bioresour Technol 160:115–118

    Article  CAS  PubMed  Google Scholar 

  • Tangaraj V, Janot J, Jaber M, Bechelany M, Balme S (2017) Adsorption and photophysical properties of fluorescent dyes over montmorillonite and saponite modified by surfactant. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.06.126

  • Tareq R, Akter N, Azam MS (2018) Biochars and biochar composites, biochar from biomass and waste. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811729-3.00010-8

  • Taylor, Publisher, Semra Çoruh, Feza Geyikçi (2012) Desalination and water treatment adsorption of copper (II) Ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies equilibrium and kinetic studies. (May 2013): 37–41

    Google Scholar 

  • Taylor, Publisher, Karima Bellir, Mossaab Bencheikh Lehocine, Abdeslam-hassen Meniai. (2013) Desalination and water treatment zinc removal from aqueous solutions by adsorption onto bentonite. (May 2014): 37–41

    Google Scholar 

  • Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physi-cochim. URSS 12:327–356

    Google Scholar 

  • Tian L, Zhang J, Shi H, Li N, Ping Q (2016) Adsorption of malachite green by diatomite: equilibrium isotherms and kinetic studies. J Dispers Sci Technol 37:1059–1066. https://doi.org/10.1080/01932691.2015.1080610

    Article  CAS  Google Scholar 

  • Tong D, Fang K, Yang H, Wang J, Zhou C, Yu W (2019) Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate. Environ Sci Pollut Res 26(16):16482–16492

    Article  CAS  Google Scholar 

  • Tsai WT, Lai CW, Hsien KJ (2006) Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. J Colloid Interface Sci 297:749–754. https://doi.org/10.1016/j.jcis.2005.10.058

    Article  CAS  PubMed  Google Scholar 

  • Turner A, Lewis M (2018) Lead and other heavy metals in soils impacted by exterior legacy paint in residential areas of south West England. Sci Total Environ 619–620:1206–1213. https://doi.org/10.1016/j.scitotenv.2017.11.041

    Article  CAS  PubMed  Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  • Valášková M, Martynková GS (2014) Vermiculite: structural properties and examples of the use vermiculite: structural properties and examples of the use. https://doi.org/10.5772/51237

  • Vanessa E, Rohwedder JR, Cadore S, Abate G, Grassi MT (2014) Applied clay science montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of. Appl Clay Sci doi. https://doi.org/10.1016/j.clay.2014.07.013

  • Varga G (2013) The structure of kaolinite and metakaolinite. Epa – J Silic Based Compos Mater 59:6–9. https://doi.org/10.14382/epitoanyag-jsbcm.2007.2

    Article  Google Scholar 

  • Wang Q, Chang X, Li D, Hu Z, Li R, He Q (2011) Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite. J Hazard Mater 186(2–3):1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chang PR, Zheng P, Ma X (2015) Monolithic porous rectorite/starch composites: fabrication, modification and adsorption. Appl Surf Sci 349:251–258

    Article  CAS  Google Scholar 

  • Wang Q, Wang Y, Chen L (2019) A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent. Carbohydr Polym 210:314–321

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang D, Li Z, Fu Y, Liu X, Brookes PC, Xu J (2019a) A comprehensive mitigation strategy for heavy metal contamination of farmland around mining areas – screening of low accumulated cultivars, soil remediation and risk assessment. Environ Pollut:820–828. https://doi.org/10.1016/j.envpol.2018.11.062

  • Wang Q, Mei D, Chen J, Lin Y, Liu J, Lu H, Yan C (2019b) Sequestration of heavy metal by glomalin-related soil protein: implication for water quality improvement in mangrove wetlands. Water Research Elsevier Ltd. https://doi.org/10.1016/j.watres.2018.10.043

  • Wu W, Wu P, Yang F, Sun D l, Zhang DX, Zhou YK (2018) Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci Total Environ 630:53–61. https://doi.org/10.1016/j.scitotenv.2018.02.183

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Gao M, Shen T, Cao G, Zhao B, Guo S (2019) Comparative study of three novel organo-clays modi fi ed with imidazolium-based gemini surfactant on adsorption for bromophenol blue. J Mol Liq 286:110928. https://doi.org/10.1016/j.molliq.2019.110928

    Article  CAS  Google Scholar 

  • Xiaotao Zhang, Ximing Wang, Krishnendu Acharya, (2015) Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10 (2):e0117077

    Google Scholar 

  • Xu R, Mao J, Peng N, Luo X, Chang C (2018) Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. Carbohydr Polym 188:143–150

    Article  CAS  PubMed  Google Scholar 

  • Yadav VB, Gadi R, Kalra S (2019) Clay based nanocomposites for removal of heavy metals from water: a review. J Environ Manag 232:803–817. https://doi.org/10.1016/j.jenvman.2018.11.120

    Article  CAS  Google Scholar 

  • Yan S, Huo W, Yang J, Zhang X, Wang Q, Wang L, Pan Y, Huang Y (2018) Green synthesis and influence of calcined temperature on the formation of novel porous diatomite microspheres for efficient adsorption of dyes. Powder Technol 329:260–269. https://doi.org/10.1016/j.powtec.2018.01.090

    Article  CAS  Google Scholar 

  • Ye L, Jin YF, Zhu QY, Sun PP (2015) Influence of mineral constituents on one-dimensional compression behaviour of clayey soils. Geotech Eng 46(3):46–53

    Google Scholar 

  • Yuan P, Wu DQ, He HP, Lin ZY (2004) The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Appl Surf Sci 227(1–4):30–39

    Article  CAS  Google Scholar 

  • Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu JX, He H (2010) Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater 173(1–3):614–621

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhang R, Wang J (2017) Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite. Water Sci Technol 75:1633–1642. https://doi.org/10.2166/wst.2017.034

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Wang C, Shu Y, Yan X, Li L (2014) Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2014.12.015

  • Zhou C-H, Zhang D, Tong D-S, Wu L-M, Yu W-H, Ismadji S (2012) Paper-like composites of cellulose acetate–organo-montmorillonite for removal of hazardous anionic dye in water. Chem Eng J 209:223–234

    Article  CAS  Google Scholar 

  • Zhu Z, Gao C, Wu Y, Sun L, Huang X, Ran W, Shen Q (2013) Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. Bioresour Technol 147:378–386

    Article  CAS  PubMed  Google Scholar 

  • Ziarani GM, Moradi R, Lashgari N, Kruger HG (2018) Introduction and importance of synthetic organic dyes. Met Synth Org Dye:1–7. https://doi.org/10.1016/b978-0-12-815647-6.00001-7

  • Zouboulis AI, Peleka EN, Samaras P (2015) Removal of toxic materials from aqueous streams. Mineral scales and deposits: scientific and technological approaches. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63228-9.00017-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalel Labidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahari, N., Nefzi, H., Labidi, A., Ayadi, S., Abderrabba, M., Labidi, J. (2021). Removal of Dyes and Heavy Metals with Clays and Diatomite. In: Inamuddin, Ahamed, M.I., Lichtfouse, E. (eds) Water Pollution and Remediation: Heavy Metals. Environmental Chemistry for a Sustainable World, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-52421-0_16

Download citation

Publish with us

Policies and ethics