Skip to main content

Studies of Big Data Processing at Linear Accelerator Sources Using Machine Learning

  • Conference paper
  • First Online:
Artificial Intelligence and Bioinspired Computational Methods (CSOC 2020)

Abstract

In linear accelerator sources such as the electron beam of the super-conducting linear accelerator at the radiation source Electron Linear accelerator for beams with high Brilliance and low Emittance (ELBE), different kinds of secondary radiation can be produced for various research purposes from materials science up to medicine. A variety of different beam detectors generate a huge amount of data, which take a great deal of computing power to capture and analyse. In this contribution, we will discuss the possibilities of using Machine Learning method to solve the big data challenges. Moreover, we will present a technique that employ the machine learning strategy for the diagnostics of high-field terahertz pulses generated at the ELBE accelerator with extremely flexible parameters such as repetition rate, pulse form and polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, Z., Strang, K., Li, R.: Big data with ten big characteristics. In: Proceedings of the 2nd International Conference on Big Data Research - ICBDR 2018 (2018). https://doi.org/10.1145/3291801.3291822

  2. Yambem, N., Nandakumar, A.: Big data: characteristics, issues and clustering techniques. Nciccnda (2018). https://doi.org/10.21467/proceedings.1.55

  3. Condron, C., Brown, C., Gozani, T., et al.: Linear accelerator x-ray sources with high duty cycle (2013). https://doi.org/10.1063/1.4802418

  4. Adelmann, A., Ryne, R., Shalf, J., Siegerist, C.: From visualisation to data mining with large data sets. In: Proceedings of the 2005 Particle Accelerator Conference (2005). https://doi.org/10.1109/pac.2005.1591735

  5. Smoot, S.R., Tan, N.K.: Cloud infrastructure as a service. Private Cloud Comput. 267–297 (2012). https://doi.org/10.1016/b978-0-12-384919-9.00008-8

  6. Castro-Leon, E., Harmon, R.: Cloud computing as a service. Cloud Serv. 3–30 (2016). https://doi.org/10.1007/978-1-4842-0103-9_1

  7. Talia, D., Trunfio, P., Marozzo, F.: Introduction to data mining. Data Anal. Cloud 1–25 (2016). https://doi.org/10.1016/b978-0-12-802881-0.00001-9

  8. Gupta, G., Pathak, D.R.: Role of cloud computing in data mining. Int. J. Eng. Comput. Sci. (2016). https://doi.org/10.18535/ijecs/v5i4.01

  9. Petrou, M.: Learning in pattern recognition. In: Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, pp. 1–12 (1999). https://doi.org/10.1007/3-540-48097-8_1

  10. Pal, A., Pal, S.K.: Pattern recognition: evolution, mining and big data. Pattern Recogn. Big Data 1–36 (2016). https://doi.org/10.1142/9789813144552_0001

  11. Cristianini, N.: Pattern analysis (data mining, intelligent data analysis, pattern discovery, pattern recognition). Dictionary Bioinf. Comput. Biol. (2004). https://doi.org/10.1002/0471650129.dob0521

  12. Aggarwal, C.C.: Cluster analysis: advanced concepts. Data Min. 205–236 (2015). https://doi.org/10.1007/978-3-319-14142-8_7

  13. Thikshaja, U.K., Paul, A.: A brief review on deep learning and types of implementation for deep learning. Deep Learn. Neural Netw. 30–40 (2020). https://doi.org/10.4018/978-1-7998-0414-7.ch002

  14. Karg, M., Scharfenberger, C.: Deep learning-based pedestrian detection for automated driving: achievements and future challenges. In: Development and Analysis of Deep Learning Architectures Studies in Computational Intelligence, pp. 117–143 (2019). https://doi.org/10.1007/978-3-030-31764-5_5

  15. Vieira, A., Ribeiro, B.: Deep learning: an overview. In: Introduction to Deep Learning Business Applications for Developers, pp. 9–35 (2018). https://doi.org/10.1007/978-1-4842-3453-2_2

  16. Singh, P.: Supervised machine learning. Learn. PySpark 117–159 (2019). https://doi.org/10.1007/978-1-4842-4961-1_6

  17. Kung, S.Y.: Unsupervised learning models for cluster analysis. Kernel Methods Mach. Learn. 139–140. https://doi.org/10.1017/cbo9781139176224.008

  18. Sejdić, E., Falk, T.H.: Signal Processing and Machine Learning for Biomedical Big Data. CRC Press/Taylor & Francis, Boca Raton (2018)

    Book  Google Scholar 

  19. Khan, M., Silva, B.N., Han, K.: Efficiently processing big data in real-time employing deep learning algorithms. In: Deep Learning and Neural Networks, pp. 1344–1357 (2020). https://doi.org/10.4018/978-1-7998-0414-7.ch07

  20. Contact. In: Radiation Source at the ELBE Center for High-Power Radiation Sources - Helmholtz-Zentrum Dresden-Rossendorf, HZDR. https://www.hzdr.de/db/Cms?pNid=145. Accessed 24 Jan 2020

  21. SLAC Home Page. In: SLAC National Accelerator Laboratory. https://www6.slac.stan-ford.edu/. Accessed 24 Jan 2020

  22. FLASH. In: Zur DESY Startseite. http://www.desy.de/forschung/anlagen__pro-jekte/flash/index_ger.html. Accessed 24 Jan 2020

  23. Tagliaferri, R., Longo, G., Dargenio, B., Incoronato, A.: Introduction: neural networks for analysis of complex scientific data: astronomy and geosciences. Neural Netw. 16, 295 (2003). https://doi.org/10.1016/s0893-6080(03)00012-1

    Article  Google Scholar 

  24. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, 1–9 (2014). https://doi.org/10.1038/ncomms5308

    Article  Google Scholar 

  25. Collaboration, T.A.: A neural network clustering algorithm for the ATLAS silicon pixel detector. J. Instrum. 9, P09009 (2014). https://doi.org/10.1088/1748-0221/9/09/p09009

    Article  Google Scholar 

  26. Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc. 450, 1441–1459 (2015). https://doi.org/10.1093/mnras/stv632

    Article  Google Scholar 

  27. Aurisano, A., Radovic, A., Rocco, D., et al.: A convolutional neural network neutrino event classifier. J. Instrum. 11, P09001 (2016). https://doi.org/10.1088/1748-0221/11/09/p09001

    Article  Google Scholar 

  28. Kim, E.J., Brunner, R.J.: Star–galaxy classification using deep convolutional neural networks. Mon. Not. R. Astron. Soc. 464, 4463–4475 (2016). https://doi.org/10.1093/mnras/stw2672

    Article  Google Scholar 

  29. Edelen, A.L., Biedron, S.G., Chase, B.E., et al.: Neural networks for modeling and control of particle accelerators. IEEE Trans. Nucl. Sci. 63, 878–897 (2016). https://doi.org/10.1109/tns.2016.2543203

    Article  Google Scholar 

  30. Kueny, E., Calendron, A.-L., Kärtner, F.X.: Electro-optic sampling of terahertz pulses in multilayer crystals. In: Laser Congress 2019 (ASSL, LAC, LS&C) (2019). https://doi.org/10.1364/assl.2019.jtu3a.16

  31. Bawatna, M., Green, B., Deinert, J.-C., et al.: Pulse-resolved data acquisition system for THz pump laser probe experiments at TELBE using super-radiant terahertz sources. In: 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (2019). https://doi.org/10.1109/imws-amp.2019.8880116

  32. Kovalev, S., Green, B., Awari, N., et al.: High-field high-repetition-rate prototype user facility for the coherent THz control of matter. In: 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016). https://doi.org/10.1109/irmmw-thz.2016.7758880

  33. Bawatna, M., Arnold, A., Deinert, J.-C., et al.: Towards real-time data processing using FPGA technology for high-speed data acquisition system at MHz repetition rates. In: Proceedings of the 19th International Conference on RF Superconductivity SRF2019, Germany (2019). https://doi.org/10.18429/JACOW-SRF2019-THP029

  34. Bawatna, M., Green, B., Kovalev, S., et al.: Research and implementation of efficient parallel processing of big data at TELBE user facility. In: 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS) (2019). https://doi.org/10.23919/spects.2019.8823486

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bawatna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bawatna, M., Green, B. (2020). Studies of Big Data Processing at Linear Accelerator Sources Using Machine Learning. In: Silhavy, R. (eds) Artificial Intelligence and Bioinspired Computational Methods. CSOC 2020. Advances in Intelligent Systems and Computing, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-51971-1_37

Download citation

Publish with us

Policies and ethics