Skip to main content

Liver Regeneration in Acute and Acute-on-Chronic Liver Failure

  • Chapter
  • First Online:
  • 533 Accesses

Abstract

Liver regeneration is a unique process in which the organ returns to its original size, histologic structure and normal metabolic function. The past several decades have identified many of the mechanisms associated with regeneration after hepatic injury. Liver regeneration in acute liver failure, as well as acute on chronic liver injury, has provided crucial information regarding pathways of regeneration beyond what the classical models of partial hepatectomy have shown. There is a growing body of data regarding cellular differentiation and stem cell involvement in the regenerative process of the liver that has been uncovered in these clinically relevant models. In this chapter, we describe the common and unique details of these myriad molecular mechanisms, including immunomodulation, microRNAs, and the gut-liver axis. Key to these pathways are the role of cellular signaling and stem cells as they relate to liver regeneration in both acute and acute on chronic injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Higgins G. Experimental pathology of the liver: restoration of the liver in the white rate following partial surgical removal. Arch Pathol. 1931;12:186–202.

    Google Scholar 

  2. Rabinovici N, Wiener E. Liver regeneration after partial hepatectomy in carbon tetrachloride-induced cirrhosis in the rat. Gastroenterology. 1961;40(3):416–22. https://doi.org/10.1016/S0016-5085(61)80075-9.

    Article  CAS  Google Scholar 

  3. Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery. 1997;121(2):142–9.

    Article  CAS  Google Scholar 

  4. Moolten FL, Bucher NL. Regeneration of rat liver: transfer of humoral agent by cross circulation. Science. 1967;158(3798):272–4.

    Article  CAS  Google Scholar 

  5. Rabes HM. Kinetics of hepatocellular proliferation as a function of the microvascular structure and functional state of the liver. Ciba Foundation Symposium 55 - hepatotrophic factors. 1978.

    Google Scholar 

  6. Weglarz TC, Sandgren EP. Timing of hepatocyte entry into DNA synthesis after partial hepatectomy is cell autonomous. Proc Natl Acad Sci U S A. 2000;97(23):12595–600. https://doi.org/10.1073/pnas.220430497.

    Article  CAS  Google Scholar 

  7. Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J. 1995;9(15):1527–36.

    Article  CAS  Google Scholar 

  8. Sadri A-R, Jeschke MG, Amini-Nik S. Cellular and molecular cascades during liver regeneration. Surg Res Open J. 2015;2(2):53–61. https://doi.org/10.17140/SROJ-2-110.

    Article  Google Scholar 

  9. Cressman DE, Diamond RH, Taub R. Rapid activation of the Stat3 transcription complex in liver regeneration. Hepatology. 1995;21(5):1443–9.

    Article  CAS  Google Scholar 

  10. Cressman DE, Greenbaum LE, Haber BA, Taub R. Rapid activation of post-hepatectomy factor/nuclear factor κB in hepatocytes, a primary response in the regenerating liver. J Biol Chem. 1994;269(48):30429–35.

    CAS  Google Scholar 

  11. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50(3):184–95. https://doi.org/10.1002/1097-0029(20000801)50:3<184::Aid-jemt2>3.0.Co;2-h.

    Article  CAS  Google Scholar 

  12. Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cell. 2012;1(4):1261–92. https://doi.org/10.3390/cells1041261.

    Article  CAS  Google Scholar 

  13. Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci U S A. 1997;94(4):1441–6.

    Article  CAS  Google Scholar 

  14. Akerman P, Cote P, Yang SQ, McClain C, Nelson S, Bagby GJ, Diehl AM. Antibodies to tumor necrosis factor-α inhibit liver regeneration after partial hepatectomy. Am J Phys. 1992;263(4 Pt 1):G579–85. https://doi.org/10.1152/ajpgi.1992.263.4.G579.

    Article  CAS  Google Scholar 

  15. Karin M, Lin A. NF-κB at the crossroads of life and death. Nat Immunol. 2002;3(3):221–7. https://doi.org/10.1038/ni0302-221.

    Article  CAS  Google Scholar 

  16. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature. 1995;376(6536):167–70. https://doi.org/10.1038/376167a0.

    Article  CAS  Google Scholar 

  17. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43(2 Suppl 1):S45–553. https://doi.org/10.1002/hep.20969.

    Article  CAS  Google Scholar 

  18. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121(7):977–90. https://doi.org/10.1016/j.cell.2005.04.014.

    Article  CAS  Google Scholar 

  19. Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol. 2016;64(6):1403–15. https://doi.org/10.1016/j.jhep.2016.02.004.

    Article  CAS  Google Scholar 

  20. Streetz KL, Luedde T, Manns MP, Trautwein C. Interleukin 6 and liver regeneration. Gut. 2000;47(2):309–12.

    Article  CAS  Google Scholar 

  21. Mackiewicz A, Schooltink H, Heinrich PC, Rose-John S. Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J Immunol. 1992;149(6):2021–7.

    CAS  Google Scholar 

  22. Aldeguer X, Debonera F, Shaked A, Krasinkas AM, Gelman AE, Que X, et al. Interleukin-6 from intrahepatic cells of bone marrow origin is required for normal murine liver regeneration. Hepatology. 2002;35(1):40–8. https://doi.org/10.1053/jhep.2002.30081.

    Article  CAS  Google Scholar 

  23. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274(5291):1379–83.

    Article  CAS  Google Scholar 

  24. Sun R, Gao B. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-γ). Gastroenterology. 2004;127(5):1525–39. https://doi.org/10.1053/j.gastro.2004.08.055.

    Article  CAS  Google Scholar 

  25. Hong F, Jaruga B, Kim WH, Radaeva S, El-Assal ON, Tian Z, et al. Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS. J Clin Invest. 2002;110(10):1503–13. https://doi.org/10.1172/JCI15841.

    Article  CAS  Google Scholar 

  26. Xiang X, Feng D, Hwang S, Ren T, Wang X, Trojnar E, et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. J Hepatol. 2020;72:736–45. https://doi.org/10.1016/j.jhep.2019.11.013.

    Article  CAS  Google Scholar 

  27. Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, Miele L, et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med. 2014;6(237):237–66. https://doi.org/10.1126/scitranslmed.3008618.

    Article  CAS  Google Scholar 

  28. Bouwens L, Baekeland M, De Zanger R, Wisse E. Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology. 1986;6(4):718–22.

    Article  CAS  Google Scholar 

  29. Antoniades CG, Quaglia A, Taams LS, Mitry RR, Hussain M, Abeles R, et al. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology. 2012;56(2):735–46. https://doi.org/10.1002/hep.25657.

    Article  CAS  Google Scholar 

  30. Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Loss of NF-κB activation in Kupffer cell-depleted mice impairs liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1570–7. https://doi.org/10.1152/ajpgi.00399.2006.

    Article  CAS  Google Scholar 

  31. Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, Pohl LR. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol. 2002;15(12):1504–13.

    Article  CAS  Google Scholar 

  32. You Q, Holt M, Yin H, Li G, Hu CJ, Ju C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol. 2013;86(6):836–43. https://doi.org/10.1016/j.bcp.2013.07.006.

    Article  CAS  Google Scholar 

  33. Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59(5):2034–42. https://doi.org/10.1002/hep.26754.

    Article  Google Scholar 

  34. Cornell RP, Liljequist BL, Bartizal KF. Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice. Hepatology. 1990;11(6):916–22.

    Article  CAS  Google Scholar 

  35. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.

    Article  CAS  Google Scholar 

  36. Seki E, Tsutsui H, Iimuro Y, Naka T, Son G, Akira S, et al. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology. 2005;41(3):443–50. https://doi.org/10.1002/hep.20603.

    Article  CAS  Google Scholar 

  37. Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, et al. The regulation of liver cell survival by complement. J Immunol. 2009;182(9):5412–8. https://doi.org/10.4049/jimmunol.0804179.

    Article  CAS  Google Scholar 

  38. Matsumoto K, Miyake Y, Umeda Y, Matsushita H, Matsuda H, Takaki A, et al. Serial changes of serum growth factor levels and liver regeneration after partial hepatectomy in healthy humans. Int J Mol Sci. 2013;14(10):20877–89. https://doi.org/10.3390/ijms141020877.

    Article  CAS  Google Scholar 

  39. Sauter KA, Waddell LA, Lisowski ZM, Young R, Lefevre L, Davis GM, et al. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. Am J Physiol Gastrointest Liver Physiol. 2016;311(3):G533–47. https://doi.org/10.1152/ajpgi.00116.2016.

    Article  Google Scholar 

  40. Stutchfield BM, Antoine DJ, Mackinnon AC, Gow DJ, Bain CC, Hawley CA, et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology. 2015;149(7):1896–909. https://doi.org/10.1053/j.gastro.2015.08.053.

    Article  CAS  Google Scholar 

  41. Possamai LA, Thursz MR, Wendon JA, Antoniades CG. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J Hepatol. 2014;61(2):439–45. https://doi.org/10.1016/j.jhep.2014.03.031.

    Article  CAS  Google Scholar 

  42. Aldrighetti L, Pulitano C, Arru M, Finazzi R, Catena M, Soldini L, et al. Impact of preoperative steroids administration on ischemia-reperfusion injury and systemic responses in liver surgery: a prospective randomized study. Liver Transpl. 2006;12(6):941–9. https://doi.org/10.1002/lt.20745.

    Article  Google Scholar 

  43. Eagon PK, Porter LE, Francavilla A, DiLeo A, Van Thiel DH. Estrogen and androgen receptors in liver: their role in liver disease and regeneration. Semin Liver Dis. 1985;5(1):59–69. https://doi.org/10.1055/s-2008-1041758.

    Article  CAS  Google Scholar 

  44. Francavilla A, Polimeno L, DiLeo A, Barone M, Ove P, Coetzee M, et al. The effect of estrogen and tamoxifen on hepatocyte proliferation in vivo and in vitro. Hepatology. 1989;9(4):614–20.

    Article  CAS  Google Scholar 

  45. Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC, et al. Granulocyte colony-stimulating factor mobilizes CD34+ cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology. 2012;142(3):505–12. https://doi.org/10.1053/j.gastro.2011.11.027.

    Article  CAS  Google Scholar 

  46. Saha BK, Mahtab MA, Akbar SMF, Noor EASM, Mamun AA, Hossain SMS, et al. Therapeutic implications of granulocyte colony stimulating factor in patients with acute-on-chronic liver failure: increased survival and containment of liver damage. Hepatol Int. 2017;11(6):540–6. https://doi.org/10.1007/s12072-017-9814-1.

    Article  Google Scholar 

  47. Yamashita Y, Shimada M, Hamatsu T, Rikimaru T, Tanaka S, Shirabe K, Sugimachi K. Effects of preoperative steroid administration on surgical stress in hepatic resection: prospective randomized trial. Arch Surg. 2001;136(3):328–33.

    Article  CAS  Google Scholar 

  48. Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300. https://doi.org/10.1002/jcp.21172.

    Article  CAS  Google Scholar 

  49. Natarajan A, Wagner B, Sibilia M. The EGF receptor is required for efficient liver regeneration. Proc Natl Acad Sci U S A. 2007;104(43):17081–6. https://doi.org/10.1073/pnas.0704126104.

    Article  Google Scholar 

  50. Mitchell C, Nivison M, Jackson LF, Fox R, Lee DC, Campbell JS, Fausto N. Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. J Biol Chem. 2005;280(4):2562–8. https://doi.org/10.1074/jbc.M412372200.

    Article  CAS  Google Scholar 

  51. Berasain C, Garcia-Trevijano ER, Castillo J, Erroba E, Lee DC, Prieto J, Avila MA. Amphiregulin: an early trigger of liver regeneration in mice. Gastroenterology. 2005;128(2):424–32.

    Article  CAS  Google Scholar 

  52. Russell WE, Kaufmann WK, Sitaric S, Luetteke NC, Lee DC. Liver regeneration and hepatocarcinogenesis in transforming growth factor-α-targeted mice. Mol Carcinog. 1996;15(3):183–9. https://doi.org/10.1002/(sici)1098-2744(199603)15:3<183::Aid-mc4>3.0.Co;2-j.

    Article  CAS  Google Scholar 

  53. Noguchi S, Ohba Y, Oka T. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in mice. J Endocrinol. 1991;128(3):425–31.

    Article  CAS  Google Scholar 

  54. Kinoshita T, Hirao S, Matsumoto K, Nakamura T. Possible endocrine control by hepatocyte growth factor of liver regeneration after partial hepatectomy. Biochem Biophys Res Commun. 1991;177(1):330–5.

    Article  CAS  Google Scholar 

  55. Burr AW, Toole K, Chapman C, Hines JE, Burt AD. Anti-hepatocyte growth factor antibody inhibits hepatocyte proliferation during liver regeneration. J Pathol. 1998;185(3):298–302. https://doi.org/10.1002/(sici)1096-9896(199807)185:3<298::Aid-path88>3.0.Co;2-b.

    Article  CAS  Google Scholar 

  56. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373(6516):699–702. https://doi.org/10.1038/373699a0.

    Article  CAS  Google Scholar 

  57. Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, Birchmeier C. Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A. 2004;101(29):10608–13. https://doi.org/10.1073/pnas.0403412101.

    Article  CAS  Google Scholar 

  58. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101(13):4477–82. https://doi.org/10.1073/pnas.0306068101.

    Article  CAS  Google Scholar 

  59. Paranjpe S, Bowen WC, Bell AW, Nejak-Bowen K, Luo JH, Michalopoulos GK. Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology. 2007;45(6):1471–7. https://doi.org/10.1002/hep.21570.

    Article  CAS  Google Scholar 

  60. Shubham S, Kumar D, Rooge S, Maras JS, Maheshwari D, Nautiyal N, et al. Cellular and functional loss of liver endothelial cells correlates with poor hepatocyte regeneration in acute-on-chronic liver failure. Hepatol Int. 2019;13:777–87. https://doi.org/10.1007/s12072-019-09983-y.

    Article  Google Scholar 

  61. Bhushan B, Apte U. Liver regeneration after acetaminophen hepatotoxicity: mechanisms and therapeutic opportunities. Am J Pathol. 2019;189(4):719–29. https://doi.org/10.1016/j.ajpath.2018.12.006.

    Article  CAS  Google Scholar 

  62. Naugler WE. Bile acid flux is necessary for normal liver regeneration. PLoS One. 2014;9(5):e97426. https://doi.org/10.1371/journal.pone.0097426.

    Article  CAS  Google Scholar 

  63. Suzuki H, Iyomasa S, Nimura Y, Yoshida S. Internal biliary drainage, unlike external drainage, does not suppress the regeneration of cholestatic rat liver after partial hepatectomy. Hepatology. 1994;20(5):1318–22.

    Article  CAS  Google Scholar 

  64. Otao R, Beppu T, Isiko T, Mima K, Okabe H, Hayashi H, et al. External biliary drainage and liver regeneration after major hepatectomy. Br J Surg. 2012;99(11):1569–74. https://doi.org/10.1002/bjs.8906.

    Article  CAS  Google Scholar 

  65. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.

    Article  CAS  Google Scholar 

  66. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006;312(5771):233–6. https://doi.org/10.1126/science.1121435.

    Article  CAS  Google Scholar 

  67. Zhang L, Wang YD, Chen WD, Wang X, Lou G, Liu N, et al. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology. 2012;56(6):2336–43. https://doi.org/10.1002/hep.25905.

    Article  CAS  Google Scholar 

  68. Wang XD, Soltesz V, Andersson R, Bengmark S. Bacterial translocation in acute liver failure induced by 90% hepatectomy in the rat. Br J Surg. 1993;80(1):66–71.

    Article  CAS  Google Scholar 

  69. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58(5):949–55. https://doi.org/10.1016/j.jhep.2013.01.003.

    Article  CAS  Google Scholar 

  70. Murata S, Ohkohchi N, Matsuo R, Ikeda O, Myronovych A, Hoshi R. Platelets promote liver regeneration in early period after hepatectomy in mice. World J Surg. 2007;31(4):808–16. https://doi.org/10.1007/s00268-006-0772-3.

    Article  Google Scholar 

  71. Beier JI, Guo L, Ritzenthaler JD, Joshi-Barve S, Roman J, Arteel GE. Fibrin-mediated integrin signaling plays a critical role in hepatic regeneration after partial hepatectomy in mice. Ann Hepatol. 2016;15(5):762–72. https://doi.org/10.5604/16652681.1212587.

    Article  CAS  Google Scholar 

  72. Groeneveld D, Pereyra D, Veldhuis Z, Adelmeijer J, Ottens P, Kopec AK, et al. Intrahepatic fibrin(ogen) deposition drives liver regeneration after partial hepatectomy in mice and humans. Blood. 2019;133(11):1245–56. https://doi.org/10.1182/blood-2018-08-869057.

    Article  CAS  Google Scholar 

  73. Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol. 2012;4(11):a007906. https://doi.org/10.1101/cshperspect.a007906.

    Article  CAS  Google Scholar 

  74. Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res. 2002;62(7):2064–71.

    CAS  Google Scholar 

  75. Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology. 2006;131(5):1561–72. https://doi.org/10.1053/j.gastro.2006.08.042.

    Article  CAS  Google Scholar 

  76. Apte U, Singh S, Zeng G, Cieply B, Virji MA, Wu T, Monga SP. β-Catenin activation promotes liver regeneration after acetaminophen-induced injury. Am J Pathol. 2009;175(3):1056–65. https://doi.org/10.2353/ajpath.2009.080976.

    Article  CAS  Google Scholar 

  77. Gougelet A, Torre C, Veber P, Sartor C, Bachelot L, Denechaud PD, et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology. 2014;59(6):2344–57. https://doi.org/10.1002/hep.26924.

    Article  CAS  Google Scholar 

  78. Leibing T, Geraud C, Augustin I, Boutros M, Augustin HG, Okun JG, et al. Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology. 2018;68(2):707–22. https://doi.org/10.1002/hep.29613.

    Article  CAS  Google Scholar 

  79. Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology. 2001;33(5):1098–109. https://doi.org/10.1053/jhep.2001.23786.

    Article  CAS  Google Scholar 

  80. Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7. https://doi.org/10.1126/science.1094291.

    Article  CAS  Google Scholar 

  81. Nakamura T, Tomita Y, Hirai R, Yamaoka K, Kaji K, Ichihara A. Inhibitory effect of transforming growth factor-β on DNA synthesis of adult rat hepatocytes in primary culture. Biochem Biophys Res Commun. 1985;133(3):1042–50.

    Article  CAS  Google Scholar 

  82. Chari RS, Price DT, Sue SR, Meyers WC, Jirtle RL. Down-regulation of transforming growth factor beta receptor type I, II, and III during liver regeneration. Am J Surg. 1995;169(1):126–31.

    Article  CAS  Google Scholar 

  83. Ko TC, Yu W, Sakai T, Sheng H, Shao J, Beauchamp RD, Thompson EA. TGF-β1 effects on proliferation of rat intestinal epithelial cells are due to inhibition of cyclin D1 expression. Oncogene. 1998;16(26):3445–54. https://doi.org/10.1038/sj.onc.1201902.

    Article  CAS  Google Scholar 

  84. Thenappan A, Shukla V, Abdul Khalek FJ, Li Y, Shetty K, Liu P, et al. Loss of transforming growth factor β adaptor protein β-2 spectrin leads to delayed liver regeneration in mice. Hepatology. 2011;53(5):1641–50. https://doi.org/10.1002/hep.24111.

    Article  CAS  Google Scholar 

  85. Patel SH, Camargo FD, Yimlamai D. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology. 2017;152(3):533–45. https://doi.org/10.1053/j.gastro.2016.10.047.

    Article  CAS  Google Scholar 

  86. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17(23):2054–60. https://doi.org/10.1016/j.cub.2007.10.039.

    Article  CAS  Google Scholar 

  87. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61. https://doi.org/10.1101/gad.1602907.

    Article  CAS  Google Scholar 

  88. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157(6):1324–38. https://doi.org/10.1016/j.cell.2014.03.060.

    Article  CAS  Google Scholar 

  89. Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology. 2017;65(4):1384–92. https://doi.org/10.1002/hep.28988.

    Article  Google Scholar 

  90. Grisham JW. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962;22:842–9.

    CAS  Google Scholar 

  91. Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. Wiley Interdiscip Rev Dev Biol. 2019;8(3):e340. https://doi.org/10.1002/wdev.340.

    Article  Google Scholar 

  92. Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012;22(13):1166–75. https://doi.org/10.1016/j.cub.2012.05.016.

    Article  CAS  Google Scholar 

  93. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24. https://doi.org/10.1038/nrm3838.

    Article  CAS  Google Scholar 

  94. Chen Y, Verfaillie CM. MicroRNAs: the fine modulators of liver development and function. Liver Int. 2014;34(7):976–90. https://doi.org/10.1111/liv.12496.

    Article  CAS  Google Scholar 

  95. Salehi S, Tavabie OD, Verma S, McPhail MJW, Farzaneh F, Bernal W, et al. Serum miRNA signatures in recovery from acute and chronic liver injury and selection for liver transplantation. Liver Transpl. 2020;26:811–22. https://doi.org/10.1002/lt.25781.

    Article  Google Scholar 

  96. Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122–a key factor and therapeutic target in liver disease. J Hepatol. 2015;62(2):448–57. https://doi.org/10.1016/j.jhep.2014.10.004.

    Article  CAS  Google Scholar 

  97. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.

    Article  CAS  Google Scholar 

  98. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009;106(11):4402–7. https://doi.org/10.1073/pnas.0813371106.

    Article  Google Scholar 

  99. Deng XG, Qiu RL, Wu YH, Li ZX, Xie P, Zhang J, et al. Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int. 2014;34(2):281–95. https://doi.org/10.1111/liv.12239.

    Article  CAS  Google Scholar 

  100. Gil A, Rodriguez-Escudero I, Stumpf M, Molina M, Cid VJ, Pulido R. A functional dissection of PTEN N-terminus: implications in PTEN subcellular targeting and tumor suppressor activity. PLoS One. 2015;10(4):e0119287. https://doi.org/10.1371/journal.pone.0119287.

    Article  CAS  Google Scholar 

  101. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011;2(3):135–64. https://doi.org/10.18632/oncotarget.240.

    Article  Google Scholar 

  102. Chen X, Song M, Chen W, Dimitrova-Shumkovska J, Zhao Y, Cao Y, et al. MicroRNA-21 contributes to liver regeneration by targeting PTEN. Med Sci Monit. 2016;22:83–91. https://doi.org/10.12659/msm.896157.

    Article  CAS  Google Scholar 

  103. Yan-nan B, Zhao-yan Y, Li-xi L, Jiang Y, Qing-jie X, Yong Z. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun. 2014;443(3):802–7. https://doi.org/10.1016/j.bbrc.2013.12.047.

    Article  CAS  Google Scholar 

  104. Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-κB signaling. Am J Physiol Gastrointest Liver Physiol. 2010;298(4):G535–41. https://doi.org/10.1152/ajpgi.00338.2009.

    Article  CAS  Google Scholar 

  105. Zhang T, Yang Z, Kusumanchi P, Han S, Liangpunsakul S. Critical role of microRNA-21 in the pathogenesis of liver diseases. Front Med. 2020;7:7. https://doi.org/10.3389/fmed.2020.00007.

    Article  Google Scholar 

  106. Yuan Q, Loya K, Rani B, Mobus S, Balakrishnan A, Lamle J, et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology. 2013;57(1):299–310. https://doi.org/10.1002/hep.25984.

    Article  CAS  Google Scholar 

  107. Sharma AD, Narain N, Handel EM, Iken M, Singhal N, Cathomen T, et al. MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology. 2011;53(5):1651–61. https://doi.org/10.1002/hep.24243.

    Article  CAS  Google Scholar 

  108. Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology. 2005;41(3):535–44. https://doi.org/10.1002/hep.20600.

    Article  CAS  Google Scholar 

  109. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013;27(7):719–24. https://doi.org/10.1101/gad.207803.112.

    Article  CAS  Google Scholar 

  110. Van Haele M, Snoeck J, Roskams T. Human liver regeneration: an etiology dependent process. Int J Mol Sci. 2019;20(9):2332. https://doi.org/10.3390/ijms20092332.

    Article  CAS  Google Scholar 

  111. Dolle L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA, Geerts A. The quest for liver progenitor cells: a practical point of view. J Hepatol. 2010;52(1):117–29. https://doi.org/10.1016/j.jhep.2009.10.009.

    Article  CAS  Google Scholar 

  112. Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 1989;49(6):1541–7.

    CAS  Google Scholar 

  113. Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B, Yeoh GC. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 2001;34(3):519–22. https://doi.org/10.1053/jhep.2001.26751.

    Article  CAS  Google Scholar 

  114. Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Investig. 1999;79(2):103–9.

    CAS  Google Scholar 

  115. Lee CW, Chen YF, Wu HH, Lee OK. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology. 2018;154(1):46–56. https://doi.org/10.1053/j.gastro.2017.09.049.

    Article  Google Scholar 

  116. Qihao Z, Xigu C, Guanghui C, Weiwei Z. Spheroid formation and differentiation into hepatocyte-like cells of rat mesenchymal stem cell induced by co-culture with liver cells. DNA Cell Biol. 2007;26(7):497–503. https://doi.org/10.1089/dna.2006.0562.

    Article  CAS  Google Scholar 

  117. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134(7):2111–21. https://doi.org/10.1053/j.gastro.2008.03.015.

    Article  Google Scholar 

  118. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. https://doi.org/10.1186/scrt465.

    Article  CAS  Google Scholar 

  119. Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci. 2020;16(5):893–903. https://doi.org/10.7150/ijbs.39725.

    Article  CAS  Google Scholar 

  120. Fiore EJ, Dominguez LM, Bayo J, Garcia MG, Mazzolini GD. Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: cells and extracellular vesicles as therapeutic strategies. World J Gastroenterol. 2018;24(23):2427–40. https://doi.org/10.3748/wjg.v24.i23.2427.

    Article  CAS  Google Scholar 

  121. Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis. Curr Opin Crit Care. 2011;17(2):165–9. https://doi.org/10.1097/MCC.0b013e328344b42d.

    Article  Google Scholar 

  122. Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol. 2016;13(8):473–85. https://doi.org/10.1038/nrgastro.2016.97.

    Article  Google Scholar 

  123. Fernandez J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut. 2018;67(10):1870–80. https://doi.org/10.1136/gutjnl-2017-314240.

    Article  CAS  Google Scholar 

  124. Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37. https://doi.org/10.1053/j.gastro.2013.02.042.

    Article  Google Scholar 

  125. Heymann F, Tacke F. Immunology in the liver–from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13(2):88–110. https://doi.org/10.1038/nrgastro.2015.200.

    Article  CAS  Google Scholar 

  126. Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol. 2018;9:2948. https://doi.org/10.3389/fimmu.2018.02948.

    Article  CAS  Google Scholar 

  127. Woolbright BL, Jaeschke H. The impact of sterile inflammation in acute liver injury. J Clin Transl Res. 2017;3(Suppl 1):170–88. https://doi.org/10.18053/jctres.03.2017S1.003.

    Article  CAS  Google Scholar 

  128. Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, et al. Acute-on chronic liver failure. J Hepatol. 2012;57(6):1336–48. https://doi.org/10.1016/j.jhep.2012.06.026.

    Article  Google Scholar 

  129. Bernsmeier C, Pop OT, Singanayagam A, Triantafyllou E, Patel VC, Weston CJ, et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology. 2015;148(3):603–15. https://doi.org/10.1053/j.gastro.2014.11.045.

    Article  CAS  Google Scholar 

  130. Jalan R. Novel approaches and therapeutics in acute-on-chronic liver failure. Liver Transpl. 2016;22(S1):14–9. https://doi.org/10.1002/lt.24621.

    Article  Google Scholar 

Download references

Disclosure Statement

The authors declare no competing nor commercial and/or financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Leventhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leventhal, T.M., KC, M., Steer, C.J. (2020). Liver Regeneration in Acute and Acute-on-Chronic Liver Failure. In: Pyrsopoulos, N. (eds) Liver Failure. Springer, Cham. https://doi.org/10.1007/978-3-030-50983-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50983-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50982-8

  • Online ISBN: 978-3-030-50983-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics