Skip to main content

Inspection Methods for 3D Concrete Printing

  • Conference paper
  • First Online:
Second RILEM International Conference on Concrete and Digital Fabrication (DC 2020)

Abstract

3D Concrete Printing (3DCP) is being used for off-site manufacture of many elements found in the built environment, ranging from furniture to bridges. The advantage of these methods is the value added through greater geometrical freedom because a mould is not needed to create the form. In recent years, research has focused on material properties both in the wet and hardened state, while less attention has been paid to verifying printed forms through geometry measurement. Checking conformity is a critical aspect of manufacturing quality control, particularly when assembling many components, or when integrating/interfacing parts into/with existing construction. This paper takes a case study approach to explore applications of digital measurement systems prior to, during, after manufacture using 3DCP and after the assembly of a set of 3DCP parts and discusses the future prospects for such technology as part of geometry quality control for the procurement of 3DCP elements for the built environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The point cloud is a term used for a set of unordered points, which are spatially sampling an object.

References

  1. Eagan, J.L.: Rethinking construction: The report of the Construction Task Force. Department of the Environment, Transport and the Regions, UK (1998). (Copy of report available on Constructing Excellence website: http://constructingexcellence.org.uk/wp-content/uploads/2014/10/rethinking_construction_report.pdf. Accessed 06 Feb 2020)

  2. HM Government: Construction 2025: strategy. https://www.gov.uk/government/publications/construction-2025-strategy. Accessed 06 Feb 2020

  3. HM Government: Made Smarter Review. https://www.gov.uk/government/publications/made-smarter-review. Accessed 06 Feb 2020

  4. HM Government: Industrial Strategy: building a Britain fit for the future. https://www.gov.uk/government/publications/industrial-strategy-building-a-britain-fit-for-the-future. Accessed 06 Feb 2020

  5. Buswell, R.A., de Silva, W.R.L., Bos, F.P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., Roussel, N.: The RILEM process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research 134, 106068 (2020)

    Article  CAS  Google Scholar 

  6. Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S., Ng, S.: Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem. Concr. Res. 112, 96–110 (2018)

    Article  CAS  Google Scholar 

  7. Roussel, N.: Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018)

    Article  CAS  Google Scholar 

  8. Reiter, L., Wangler, T., Roussel, N., Flatt, R.J.: The role of early age structural build-up in digital fabrication with concrete. Cem. Concr. Res. 112, 86–95 (2018)

    Article  CAS  Google Scholar 

  9. Asprone, D., Menna, C., Bos, F.P., Salet, T.A., Mata-Falcón, J., Kaufmann, W.: Rethinking reinforcement for digital fabrication with concrete. Cem. Concr. Res. 112, 111–121 (2018)

    Article  CAS  Google Scholar 

  10. Buswell, R.A., Thorpe, A., Soar, R.C., Gibb, A.G.: Design data issues for the control of mega-scale rapid manufacturing. In: Figshare Conference contribution.https://hdl.handle.net/2134/26938. Accessed 06 Feb 2020

  11. Buswell, R.A., Thorpe, A., Soar, R.C., Gibb, A.G.: Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Autom. Constr. 17(8), 923–929 (2008)

    Article  Google Scholar 

  12. Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S.A., Gibb, A., Thorpe, T.: Development of a viable concrete printing process (2011)

    Google Scholar 

  13. Xu, J., Ding, L., Cai, L., Zhang, L., Luo, H., Qin, W.: Volume-forming 3D concrete printing using a variable-size square nozzle. Autom. Constr. 104, 95–106 (2019)

    Article  Google Scholar 

  14. Ketel, S., Falzone, G., Wang, B., Washburn, N., Sant, G.: A printability index for linking slurry rheology to the geometrical attributes of 3D-printed components. Cem. Concr. Compos. 101, 32–43 (2019)

    Article  CAS  Google Scholar 

  15. Chin, S., Kim, K., Kim, Y.S.: A process-based quality management information system. Autom. Constr. 13(2), 241–259 (2004)

    Article  Google Scholar 

  16. Fox, A.J., Cornell, H.A. (eds.) Quality in the Constructed Project: Proceedings of the Workshop. Amer Society of Civil Engineers (1985)

    Google Scholar 

  17. Kavanagh, T.C., Müller, F., O’Brien, J.J.: Construction Management: A Professional Approach. McGraw-Hill, New York (1978)

    Google Scholar 

  18. Booker, J.D., Swift, K.G., Brown, N.J.: Designing for assembly quality: strategies, guidelines and techniques. J. Eng. Des. 16(3), 279–295 (2005)

    Article  Google Scholar 

  19. Shafer, D.A.: Successful assembly automation: a development and implementation guide. Society of Manufacturing Engineers (1998)

    Google Scholar 

  20. Maboudi, M., Bánhid, D., Gerke, M.: Investigation Of geometric performance of an indoor mobile mapping system. Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci. 42(2), 637–642 (2018)

    Article  Google Scholar 

  21. Wang, Q., Kim, M.K.: Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018. Adv. Eng. Inf. 39, 306–319 (2019)

    Article  Google Scholar 

  22. Kim, M.K., Thedja, J.P.P., Wang, Q.: Automated dimensional quality assessment for formwork and rebar of reinforced concrete components using 3D point cloud data. Autom. Constr. 112, 103077 (2020)

    Article  Google Scholar 

  23. Brilakis, I., Haas, C.T.M.: Infrastructure computer vision. Butterworth-Heinemann (2019). https://www.elsevier.com/books/infrastructure-computer-vision/brilakis/978-0-12-815503-5. Accessed 06 Feb 2020

  24. Kim, M.K., Wang, Q., Li, H.: Non-contact sensing based geometric quality assessment of buildings and civil structures: a review. Autom. Constr. 100, 163–179 (2019)

    Article  Google Scholar 

  25. Labonnote, N., Rønnquist, A., Manum, B., Rüther, P.: Additive construction: state-of-the-art, challenges and opportunities. Autom. Constr. 72, 347–366 (2019)

    Article  Google Scholar 

  26. Ahn, D., Kweon, J.H., Kwon, S., Song, J., Lee, S.: Representation of surface roughness in fused deposition modeling. J. Mater. Process. Technol. 209(15–16), 5593–5600 (2009)

    Article  CAS  Google Scholar 

  27. Buswell, R.A., de Silva, W.L., Jones, S.Z., Dirrenberger, J.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018)

    Article  CAS  Google Scholar 

  28. Neudecker, S., Bruns, C., Gerbers, R., Heyn, J., Dietrich, F., Dröder, K., Raatz, A., Kloft, H.: A new robotic spray technology for generative manufacturing of complex concrete structures without formwork. Procedia CIRP 43, 333–338 (2016)

    Article  Google Scholar 

  29. Popescu, C., Täljsten, B., Blanksvärd, T., Elfgren, L.: 3D reconstruction of existing concrete bridges using optical methods. Struct. Infrastruct. Eng. 15(7), 912–924 (2016)

    Article  Google Scholar 

  30. Omar, T., Nehdi, M.L.: Data acquisition technologies for construction progress tracking. Autom. Constr. 70, 143–155 (2016)

    Article  Google Scholar 

  31. Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. constr. 15(2), 124–138 (2006)

    Article  Google Scholar 

  32. Gordon, S.J., Lichti, D.D.: Modeling terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 133(2), 72–80 (2007)

    Article  Google Scholar 

  33. Bosché, F.: Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv. Eng. Inf. 24(1), 107–118 (2010)

    Article  Google Scholar 

  34. Kim, M.: Noncontact Quality Assessment of Precast Concrete Elements using 3D Laser Scanning and Building Information Modeling. Doctoral thesis (2015). https://lbezone.ust.hk/pdfviewer/web/viewer.html?file=aHR0cHM6Ly9sYmV6b25lLnVzdC5oay9vYmovMS9vL2IxNDUwNzE5L2IxNDUwNzE5LnBkZg==#page=1. Accessed 06 Feb 2020

  35. Golparvar-Fard, M., Pena-Mora, F., Savarese, S.: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. J. Comput. Civil Eng. 29(1), 04014025 (2015)

    Article  Google Scholar 

  36. Braun, A., Tuttas, S., Stilla, U., Borrmann, A.: Process-and computer vision-based detection of as-built components on construction sites. In: Proceedings of the International Symposium on Automation and Robotics in Construction, ISARC, vol. 35, pp. 1–7. IAARC Publications (2018)

    Google Scholar 

  37. Hamledari, H., McCabe, B., Davari, S.: Automated computer vision-based detection of components of under-construction indoor partitions. Autom. Constr. 74, 78–94 (2017)

    Article  Google Scholar 

  38. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  39. Xu, J., Buswell, R.A., Kinnell, P., Biro, I., Hodgson, J., Konstantinidis, N., Ding, L.: Inspecting manufacturing precision of 3D printed concrete parts based on geometric dimensioning and tolerancing. Autom. Constr. 117, 103233 (2020)

    Article  Google Scholar 

  40. Cloudcompare.org: CloudCompare - 3D point cloud and mesh processing software Open Source Project. https://www.danielgm.net/cc/. Accessed 06 Feb 2020

  41. Lim, S., Buswell, R.A., Valentine, P.J., Piker, D., Austin, S.A., De Kestelier, X.: Modelling curved-layered printing paths for fabricating large-scale construction components. Addit. Manuf. 12, 216–230 (2016)

    Google Scholar 

  42. Wolfs, R.J., Bos, F.P., van Strien, E.C., Salet, T.A.: A real-time height measurement and feedback system for 3D concrete printing. In: High Tech Concrete: Where Technology and Engineering Meet - Proceedings of the 2017 Fib Symposium, pp. 2474–2483. Springer, Cham (2018)

    Google Scholar 

  43. Lindemann, H., Gerbers, R., Ibrahim, S., Dietrich, F., Herrmann, E., Dröder, K., Raatz, A., Kloft, H.: Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures. In: RILEM International Conference on Concrete and Digital Fabrication, pp. 287–298. Springer, Cham (2018)

    Google Scholar 

  44. Grasser, G., Pammer, L., Köll, H., Werner, E., Bos, F.P.: Complex architecture in printed concrete: the case of the Innsbruck University 350th anniversary pavilion Cohesion. In: Proceedings of Digital Concrete 2020, (2020)

    Google Scholar 

Download references

Acknowledgements

The case study in Sect. 3.1 was supported by: the UK Industrial Strategy Challenge Fund: Transforming Construction initiative (EPSRC grant number EP/S031405/1) and EPSRC Grant number EP/P031420/1.

The case study in Sect. 3.2 was part of a research project co-funded by a partner group of enterprises and associations, that consisted of (alphabetical order) Ballast Nedam, BAM Infraconsult bv, Bekaert, Concrete Valley, CRH, Cybe, Saint-Gobain Weber Beamix, SGS Intron, SKKB, Van Wijnen, Verhoeven Timmerfabriek, and Witteveen + Bos. Their support is gratefully acknowledged.

The case study in Sect. 3.3 was funded through the lower Soaxony Ministry of Science and Culture and the Lower Saxony Technical Universities (NTH). The Digitial Building Fabricaion Laboratory was funded through the German Research Foundation (DFG). The Junior Professorship for Digital Building Fabrication is funded by the Gerhard and Karin Matthäi Stiftung. The measurements were carried out as preliminary studies within the framework of TRR 277 “Additive Manufacturing in Construction”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Buswell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 RILEM

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buswell, R. et al. (2020). Inspection Methods for 3D Concrete Printing. In: Bos, F., Lucas, S., Wolfs, R., Salet, T. (eds) Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-49916-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49916-7_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49915-0

  • Online ISBN: 978-3-030-49916-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics