Skip to main content

Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides

  • Chapter
  • First Online:
Microbiota and Biofertilizers

Abstract

Plant growth-promoting rhizobacteria (PGPR) play an important role in sustainable agriculture through the improvement of plant growth via different processes like biological nitrogen fixation, phosphate solubilization, siderophore production, and phytohormone synthesis. The use of PGPR is potentially increased in sustainable farming due to its ecofriendly and efficient nature. It is being used as an alternative source to minimize the increasing use of synthetic fertilizers and pesticides. Biofertilizers are the substances containing living microbes, helping to improve plant growth and development. These living microorganisms enhance the nutrient status of soil through the expansion of root surface area, nitrogen fixation, phosphate solubilization, and combination of all these mechanisms. The market of the biofertilizers is expected to reach 3.8$ billion by 2025 from 2$ billion in 2019. Some Pseudomonas species also improve the plant growth through the production of water-soluble vitamins like niacin. PGPR have the potential to work as phytostimulators through the production of various phytohormones like indole acetic acid (IAA), cytokinin, gibberellins, and ethylene. But some bacteria and fungi have ability to improve plant growth by restricting the growth of plant pathogens are known as biopesticides. Cyanide biosynthesis, siderophore production, and induction of systemic resistance genes in plants are the different mechanisms for the PGPR to work against the plant pathogens. PGPR can also work as biocontrol agents providing protection to the plants, enhancing the plant growth through the synthesis of antibiotics. The use of the biopesticides is increasing slowly at a rate of 8% annually based on the different types of microbial pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2010) Role of plant growth promoting rhizobacteria in biocontrol of plant diseases and sustainable agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 157–195

    Chapter  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 97–116

    Chapter  Google Scholar 

  • Auld BA (2000) Success in biological control of weeds by pathogens, including bioherbicides. In: Biological control: measures of success. Springer, Dordrecht, pp 323–340

    Chapter  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. In: Handbook of microbial biofertilizers. Food Products Press, New York, pp 137–181

    Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth a critical assessment. Adv Agron a108:77–136. Academic Press

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30(8–9):1225–1228

    Article  CAS  Google Scholar 

  • Becker JO, Hedges RW, Messens E (1985) Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl Environ Microbiol 49(5):1090–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Tech 11(5):557–574

    Article  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):66

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL, Albrecht-Gary AM (2012) Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron (III), copper (II) and zinc (II) complexes. Dalton Trans 41(9):2820–2834

    Article  CAS  PubMed  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Pesticides in the modern world-pesticides use and management. Intech, Rijeka, pp 273–302

    Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19(5):275–283

    Article  CAS  Google Scholar 

  • Chandrashekhara, Niranjan Raj S, Manjunath G, Deepak S, Shekar Shetty H (2010) Seed treatment with aqueous extract of Viscum album induces resistance to pearl millet downy mildew pathogen. J Plant Interact 5(4):283–291

    Article  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Junge H (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69(12):7161–7172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR-Arabidopsis interactions are a useful system to study signaling pathways involved in plant developmental control. Plant Signal Behav 4(4):319–321

    Article  Google Scholar 

  • Dominguez-Nuñez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98

    Chapter  Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57(3):423–436

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244

    Article  PubMed  Google Scholar 

  • Environmental Protection Agency (2007) What are biopesticdes? US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • EPA (2019) https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110(4):324–327

    Article  CAS  Google Scholar 

  • Fernando WD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: PGPR. Biofertilizers and biocontrol. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Flores-Vargas RD, O’Hara GW (2006) Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J Appl Microbiol 100(5):946–954

    Article  CAS  PubMed  Google Scholar 

  • Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog 3(1):17

    Article  Google Scholar 

  • Gijon‐Hernandez A, Teliz‐Ortiz D, Mejia‐Sanchez D, Torre‐Almaraz RDL, Cardenas‐Soriano E, De Leon C, Mora‐Aguilera A (2010) Leaf Stripe and Stem Rot Caused by Burkholderia gladioli, a New Maize Disease in Mexico. Journal of Phytopathology 159:377–381.

    Google Scholar 

  • Grobelak A, Hiller J (2017) Bacterial siderophores promote plant growth: screening of catechol and hydroxamate siderophores. Int J Phytoremediation 19(9):825–833

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41(1):117–153

    Article  CAS  PubMed  Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Hol WH, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38(4):845–849

    Article  CAS  Google Scholar 

  • Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can J Microbiol 54(4):248–258

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakashvel M, Mathivanan N (2011) Management of plant diseases by microbial metabolites. In: Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 237–265

    Chapter  Google Scholar 

  • Kamei A, Dolai AK, Kamei A (2014) Role of hydrogen cyanide secondary metabolite of plant growth promoting rhizobacteria as biopesticides of weeds. Global J Sci Front Res 14(6):109–112

    Google Scholar 

  • Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64(10):3939–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45(2):71–77

    Article  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77(6):850–858

    CAS  Google Scholar 

  • Kloeppe JW, Rodriguez-Kabana R, Zehnder AW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28(1):21–26

    Article  Google Scholar 

  • Kloepper JW (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Station de Pathologie Vegetale et Phytobacteriologie, vol 2. INRA, Angers, pp 879–882

    Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70(11):1078–1082

    Article  Google Scholar 

  • Kloepper JW, Gutierrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38(6):520–525

    Article  CAS  PubMed  Google Scholar 

  • Leahy J, Mendelsohn M, Kough J, Jones R, Berckes N (2014) Biopesticide oversight and registration at the US Environmental Protection Agency. In: Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, DC, pp 3–18

    Chapter  Google Scholar 

  • LeclèreV, Béchet M, AdamA, Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71(8):4577–4584

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81(1–4):373–383

    Article  CAS  PubMed  Google Scholar 

  • Marek-Kozaczuk M, Skorupska A (2001) Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fertil Soils 33(2):146–151

    Article  CAS  Google Scholar 

  • Marrone PG (2009) Barriers to adoption of biological control agents and biological pesticides. In: Integrated pest management. Cambridge University Press, Cambridge, pp 163–178

    Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Funct Plant Biol 28(9):983–990

    Article  Google Scholar 

  • Meyer JA, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology 107(2):319–328

    CAS  Google Scholar 

  • Milner JL, Silo-Suh LAURA, Lee JC, He H, Clardy J, Handelsman JO (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62(8):3061–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of Xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65(10):4334–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naureen Z, Price AH, Hafeez FY, Roberts MR (2009) Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Protection 28:1052-1060. https://doi.org/10.1016/j.cropro.2009.08.007

    Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40(1):34–39

    Article  CAS  Google Scholar 

  • Péchy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Keel C (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10(9):2368–2386

    Article  PubMed  CAS  Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting Rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In: PGPR amelioration in sustainable agriculture. Woodhead Publishing, Duxford, pp 129–157

    Chapter  Google Scholar 

  • Quan CS, Wang X, Fan SD (2010) Antifungal compounds of plant growth promoting rhizobacteria and its action mode. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 117–156

    Chapter  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2, 4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89(6):470–475

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11(5):195–200

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Update on microbial phosphorus. Soil microorganisms mediating phosphorus availability. Plant Physiol 156(989):e996

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39(3):282–289

    Article  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore NV, Van Rie J, Lereclus D, Baum J, Feitelson J, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah-Smith DA, Burns RG (1997) Shelf-life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coatings. Biocontrol Sci Tech 7(1):65–74

    Article  Google Scholar 

  • Siddiqui ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71(9):5646–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30(2):719–725

    Article  CAS  PubMed  Google Scholar 

  • Tazoe M, Ichikawa K, Hoshino T (1999) Production of vitamin B6 in Rhizobium. Biosci Biotechnol Biochem 63(8):1378–1382

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, Liu S, Singh VP, Sharma S, Srivastava P, Prasad SM, Dubey NK (2018) Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ Sci 5:86

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2–3):127–141

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Walter A, Römheld V, Marschner H, Crowley DE (1994) Iron nutrition of cucumber and maize: effect of Pseudomonas putida YC 3 and its siderophore. Soil Biol Biochem 26(8):1023–1031

    Article  CAS  Google Scholar 

  • Weber NF, Herrmann I, Hochholdinger F, Ludewig U, Neumann G (2018) PGPR-induced growth stimulation and nutrient acquisition in maize: do root hairs matter? Sci Agric Bohem 49(3):164–172

    Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15(11):2532–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. In: Advances in botanical research, vol 26. Academic, New York, pp 1–134

    Google Scholar 

  • Yang L (2016) Root exudation pattern of sugar beet (Beta vulgaris L.) as influenced by light intensity and P deficiency (Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen)

    Google Scholar 

  • Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25(3):288–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., Nazir, M.Z. (2021). Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. In: Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A. (eds) Microbiota and Biofertilizers. Springer, Cham. https://doi.org/10.1007/978-3-030-48771-3_11

Download citation

Publish with us

Policies and ethics