Skip to main content

WP-1 Reference Cases of Laminar and Turbulent Interactions

  • Chapter
  • First Online:
Transition Location Effect on Shock Wave Boundary Layer Interaction

Abstract

In order to be able to judge the effectiveness of transition induction in WP-2, reference flow cases were planned in WP-1. There are two obvious reference cases—a fully laminar interaction and a fully turbulent interaction. Here it should be explained that the terms “laminar” and “turbulent” interaction refer to the boundary layer state at the beginning of interaction only. There are two basic configurations of shock wave boundary layer interaction and these are a part of the TFAST project. One is the normal shock wave, which typically appears at the transonic wing and on the turbine cascade. The characteristic incipient separation Mach number range is about M = 1.2 in the case of a laminar boundary layer and about M = 1.32 in the case of turbulent boundary layer. The second typical flow case is the oblique shock wave reflection. The most characteristic case in European research is connected to the 6th FP IP HISAC project concerning a supersonic business jet. The design speed of this airplane is M = 1.6. Therefore the TFAST consortium decided to use this Mach number as the basic case. Pressure disturbance at this Mach number is not very high and can be compared to the disturbance of the normal shock at the incipient separation Mach number mentioned earlier. As mentioned earlier, shock reflection at M = 1.6 may be related to incipient separation. Therefore two additional test cases were planned with different Mach numbers. ITAM conducted an M = 1.5 test case, and TUD an M = 1.7 test case. These partners have also previously made very specialized and successful contributions to the UFAST project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.S.C. Davidson, H. Babinsky, An investigation of interactions between normal shocks and transitional boundary layers—control ID 1889354. 44th AIAA Fluid Dyn. Conf., no. June, pp. 1–16 (2014)

    Google Scholar 

  2. S.P. Colliss, Vortical structures on three-dimensional shock control bumps (2014)

    Google Scholar 

  3. N. Titchener, S. Colliss, H. Babinsky, On the calculation of boundary-layer parameters from discrete data. Exp. Fluids 56(8), 1–18 (2015)

    Article  Google Scholar 

  4. C. Sun, M.E. Childsf, A Modified Wall Wake Velocity Profile for Turbulent Compressible Boundary Layers, no. June, pp. 7–9 (1973)

    Google Scholar 

  5. T.B. Layer, Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer, no. June, pp. 655–657 (1979)

    Google Scholar 

  6. T.S.C. Davidson, H. Babinsky, Influence of Boundary-Layer State on Development Downstream of Normal Shock Interactions, pp. 10–12

    Google Scholar 

  7. L.U. Schrader, L. Brandt, C. Mavriplis, D.S. Henningson, Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245–271 (2010)

    Article  Google Scholar 

  8. J. Ackeret, F. Feldmann, N. Rott, Investigations of compression shocks and boundary layers in gases moving at high speed, NACA Rep., no. 1113 (1947)

    Google Scholar 

  9. J.W. Kooi, Experiment on transonic shock wave boundary layer interaction, AGARD Flow Sep. (1975)

    Google Scholar 

  10. W.G. Sawyer, C.J. Long, A study of normal shock-wave turbulent boundary-layer interactions at mach numbers of 1.3, 1.4 and 1.5, Tech. Rep. 82099, NASA (1982)

    Google Scholar 

  11. S. Pirozzoli, P. Orlandi, M. Bernardini, The fluid dynamics of rolling wheels at low Reynolds number. J. Fluid Mech. 706(July), 496–533 (2012)

    Article  Google Scholar 

  12. S. Pirozzoli, M. Bernardini, F. Grasso, Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)

    Article  Google Scholar 

  13. S. Pirozzoli, Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229(19), 7180–7190 (2010)

    Article  MathSciNet  Google Scholar 

  14. M. Bernardini, S. Pirozzoli, A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena. J. Comput. Phys. 228(11), 4182–4199 (2009)

    Article  Google Scholar 

  15. E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)

    Article  MathSciNet  Google Scholar 

  16. M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano, An immersed boundary method for compressible flows using local grid refinement. J. Comput. Phys. 225(2), 2098–2117 (2007)

    Article  MathSciNet  Google Scholar 

  17. M. Alam, N.D. Sandham, Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000)

    Article  Google Scholar 

  18. P.R. Spalart, M.K. Strelets, Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000)

    Article  Google Scholar 

  19. S. Pirozzoli, M. Bernardini, F. Grasso, Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, pp. 205–231 (Oct. 2008)

    Google Scholar 

  20. S. Pirozzoli, F. Grasso, Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25, Phys. Fluids 18(6) (2006)

    Google Scholar 

  21. P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech. 30(1), pp. 539–578 (Jan. 1998)

    Google Scholar 

  22. J. Delery, J.G. Marvin, Shock wave—boundary layer interactions (1986)

    Google Scholar 

  23. E. Katzer, On the lengthscales of laminar shock/boundary-layer interaction, 206 (1989)

    Google Scholar 

  24. B.I. Greber, R.J. Hakkinen, L. Trilling, laminar boundary layer oblique shock wave interaction on flat and curved plates 1, 33, pp. 312–331

    Google Scholar 

  25. R. Dp, B. Or, R. Jenson, Triple-deck solutions for viscous supersonic and l o w past corners hypersonic f, 89 (1978)

    Google Scholar 

  26. D.R Chapman, D.M Kuehn, H.K Larson, Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition (1957)

    Google Scholar 

  27. R.H.M. Giepman, F.F.J. Schrijer, B.W. van Oudheusden, High-resolution PIV measurements of a transitional shock wave–boundary layer interaction. Exp. Fluids 56(6), 1–20 (2015)

    Article  Google Scholar 

  28. R.H.M. Giepman, F.F.J. Schrijer, B.W. van Oudheusden, Infrared thermography measurements on a moving boundary-layer transition front in supersonic flow. AIAA J. 53(7), 2056–2061 (2015)

    Article  Google Scholar 

  29. S. Dhawan, R. Narasimha, Some properties of boundary-layer flow during the transition from laminar to turbulent motion. J. Fluid Mech. 3(1951), 418–453 (1958)

    Article  Google Scholar 

  30. P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181 (2006)

    Article  Google Scholar 

  31. P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA, 439 (1992)

    Google Scholar 

  32. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, 32(8) (1994)

    Google Scholar 

  33. K.-Y. Chien, Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA J. 20(1), pp. 33–38 (Jan. 1982)

    Google Scholar 

  34. R. Bourguet, M. Braza, G. Harran, R. El Akoury, Anisotropic organised eddy simulation for the prediction of non-equilibrium turbulent flows around bodies. J. Fluids Struct. 24(8), 1240–1251 (2008)

    Article  Google Scholar 

  35. D.M. Dawson, S.K. Lele, J. Bodart, Assessment of wall-modeled large eddy simulation for supersonic compression ramp flows. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics (2013)

    Google Scholar 

  36. S. Hickel, E. Touber, J. Bodart, J. Larsson, A parametrized non-equilibrium wall-model for large-eddy simulations (2015)

    Google Scholar 

  37. M. Shur, P. Spalart, M. Strelets, A. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  38. E. Touber, N.D. Sandham, Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417–465 (2011)

    Article  Google Scholar 

  39. L. Agostini, L. Larchevêque, P. Dupont, J. Debiève, J.-P. Dussauge, Zones of influence and shock motion in a shock/boundary-layer interaction. AIAA J. 50(6), 1377–1387 (2012)

    Article  Google Scholar 

  40. P. Durbin, X. Wu, Transition Beneath Vortical Disturbances (2007)

    Google Scholar 

  41. L. Agostini, L. Larchevêque, P. Dupont, L. Agostini, L. Larchevêque, P. Dupont, Mechanism of shock unsteadiness in separated shock/boundary-layer interactions Mechanism of shock unsteadiness in separated shock/boundary-layer interactions, 126103 (2015)

    Google Scholar 

  42. J. Riou, E. Garnier, C. Basdevant, Compressibility effects on the vortical flow over a 65° sweep delta wing. Phys. Fluids 22(3), 2–13 (2010)

    Article  Google Scholar 

  43. E. Garnier, Stimulated Detached Eddy Simulation of three-dimensional shock/boundary layer interaction, pp. 479–486 (2009)

    Google Scholar 

  44. P. Roe, Approximate riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), pp. 357–372 (Oct. 1981)

    Google Scholar 

  45. F. Ducros et al., Large-eddy simulation of the shock/turbulence interaction, 549, pp. 517–549 (1999)

    Google Scholar 

  46. E. Lenormand, P. Sagaut, Subgrid-scale models for large-eddy simulations of compressible wall bounded flows, 38(8) (2000)

    Google Scholar 

  47. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall PTR, Upper Saddle River, NJ, USA, 1971)

    MATH  Google Scholar 

  48. R.J. Volino, M.P. Schultz, C.M. Pratt, Conditional sampling in a transitional boundary layer under high freestream turbulence conditions. J. Fluids Eng. 125(1), pp. 28–37 (Jan. 2003)

    Google Scholar 

  49. S.P. Schneider, Improved methods for measuring laminar-turbulent intermittency in boundary layers. Exp. Fluids 18(5), 370–375 (1995)

    Article  Google Scholar 

  50. H. Babinsky, J.K. Harvey, Shock Wave-Boundary-Layer Interactions (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Dussauge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dussauge, JP. et al. (2021). WP-1 Reference Cases of Laminar and Turbulent Interactions. In: Doerffer, P., et al. Transition Location Effect on Shock Wave Boundary Layer Interaction. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-47461-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47461-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47460-7

  • Online ISBN: 978-3-030-47461-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics