Skip to main content

Towards a More Reproducible Biomedical Research Environment: Endorsement and Adoption of the FAIR Principles

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

The FAIR guiding Principles for scientific data management and stewardship are a fundamental enabler for digital transformation and transparent research. They were designed with the purpose of improving data quality, by making it Findable, Accessible, Interoperable and Reusable. While these principles have been endorsed by both data owners and regulators as key data management techniques, their translation into practice in quite novel. The recent publication of FAIR metrics that allow for the evaluation of the degree of FAIRness of a data source, platform or system is a further booster towards their adoption and practical implementation. We present in this paper an overview of the adoption and impact of the FAIR principles in the area of biomedical and life-science research. Moreover, we consider the use case of biomedical data discovery platforms and assess the degree of FAIR compatibility of three such platforms. This assessment is guided by the FAIR metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://eoscpilot.org.

  2. 2.

    http://www.elixir-europe.org.

  3. 3.

    http://commonfound.nih.gov/bd2k/.

  4. 4.

    http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf.

  5. 5.

    www.ehden.eu.

  6. 6.

    http://bd4bo.eu/.

  7. 7.

    https://www.go-fair.org.

  8. 8.

    fairsfair.eu.

  9. 9.

    https://fairsharing.org/.

  10. 10.

    https://fair-dom.org/about-fairdom/.

  11. 11.

    http://www.openphactsfoundation.org/.

  12. 12.

    http://fairmetrics.org.

  13. 13.

    www.smart-api.info.

  14. 14.

    https://github.com/FAIRMetrics/Metrics/blob/master/ALL.pdf.

  15. 15.

    https://toolbox.google.com/datasetsearch.

References

  1. Bergeron, J., Doiron, D., Marcon, Y., Ferretti, V., Fortier, I.: Fostering population-based cohort data discovery: the Maelstrom research cataloguing toolkit. PLoS ONE 13(7), e0200926 (2018)

    Article  Google Scholar 

  2. Chen, X., et al.: Datamed-an open source discovery index for finding biomedical datasets. J. Am. Med. Inform. Assoc. 25(3), 300–308 (2018)

    Article  Google Scholar 

  3. Danciu, I., et al.: Secondary use of clinical data: the Vanderbilt approach. J. Biomed. Inform. 52, 28–35 (2014)

    Article  Google Scholar 

  4. Dumontier, M., et al.: The health care and life sciences community profile for dataset descriptions. PeerJ 4, e2331 (2016)

    Article  Google Scholar 

  5. Gainotti, S., et al.: The RD-Connect Registry & Biobank Finder: a tool for sharing aggregated data and metadata among rare disease researchers. Eur. J. Hum. Genet. 26(5), 631 (2018)

    Article  Google Scholar 

  6. Green, A.K., et al.: The project data sphere initiative: accelerating cancer research by sharing data. Oncologist 20(5), 464–e20 (2015)

    Google Scholar 

  7. Groth, P., Loizou, A., Gray, A.J., Goble, C., Harland, L., Pettifer, S.: API-centric linked data integration: the open PHACTS discovery platform case study. Web Semant.: Sci. Serv. Agents World Wide Web 29, 12–18 (2014)

    Article  Google Scholar 

  8. Holub, P., et al.: Enhancing reuse of data and biological material in medical research: from FAIR to FAIR-health. Biopreserv. Biobank. 16(2), 97–105 (2018)

    Article  Google Scholar 

  9. Jagodnik, K.M., et al.: Developing a framework for digital objects in the big data to knowledge (BD2K) commons: report from the commons framework pilots workshop. J. Biomed. Inform. 71, 49–57 (2017)

    Article  Google Scholar 

  10. Jansen, C., Beier, M., Witt, M., Frey, S., Krefting, D.: Towards reproducible research in a biomedical collaboration platform following the FAIR guiding principles. In: Companion Proceedings of the 10th International Conference on Utility and Cloud Computing, pp. 3–8. ACM (2017)

    Google Scholar 

  11. Karim, M.R., et al.: Towards a FAIR sharing of scientific experiments: improving discoverability and reusability of dielectric measurements of biological tissues. In: SWAT4LS (2017)

    Google Scholar 

  12. Koehorst, J.J., van Dam, J.C., Saccenti, E., Martins dos Santos, V.A., Suarez-Diez, M., Schaap, P.J.: SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics 34(8), 1401–1403 (2017)

    Google Scholar 

  13. Lancaster, O., et al.: Cafe Variome: general-purpose software for making genotype-phenotype data discoverable in restricted or open access contexts. Hum. Mutat. 36(10), 957–964 (2015)

    Article  Google Scholar 

  14. Madduri, R., et al.: Reproducible big data science: a case study in continuous FAIRness. PLoS ONE 14(4), e0213013 (2019)

    Article  Google Scholar 

  15. Magazine, D.L.: The dataverse network®: an open-source application for sharing, discovering and preserving data. D-lib Mag. 17(1), 2 (2011)

    Google Scholar 

  16. Martin-Sanchez, F., Verspoor, K.: Big data in medicine is driving big changes. Yearb. Med. Inform. 9(1), 14 (2014)

    Google Scholar 

  17. McQuilton, P., et al.: BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences. Database 2016 (2016)

    Google Scholar 

  18. Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L.O.B., Wilkinson, M.D.: Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European Open Science Cloud. Inf. Serv. 37(1), 49–56 (2017)

    Google Scholar 

  19. Natsiavas, P., Boyce, R.D., Jaulent, M.C., Koutkias, V.: OpenPVSignal: advancing information search, sharing and reuse on pharmacovigilance signals via FAIR principles and semantic web technologies. Front. Pharmacol. 9, 609 (2018)

    Article  Google Scholar 

  20. Navale, V., McAuliffe, M.: Long-term preservation of biomedical research data. F1000Research 7 (2018)

    Google Scholar 

  21. van Panhuis, W.G., Cross, A., Burke, D.S.: Project Tycho 2.0: a repository to improve the integration and reuse of data for global population health. J. Am. Med. Inform. Assoc. 25(12), 1608–1617 (2018)

    Google Scholar 

  22. Phan, J.H., Quo, C.F., Cheng, C., Wang, M.D.: Multiscale integration of -omic, imaging, and clinical data in biomedical informatics. IEEE Rev. Biomed. Eng. 5, 74–87 (2012)

    Article  Google Scholar 

  23. Press, G.: Cleaning big data: most time-consuming, least enjoyable data science task, survey says. Forbes, 23 March 2016

    Google Scholar 

  24. Prinz, F., Schlange, T., Asadullah, K.: Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10(9), 712 (2011)

    Article  Google Scholar 

  25. Pundir, S., Martin, M.J., O’Donovan, C.: UniProt protein knowledgebase. In: Wu, C.H., Arighi, C.N., Ross, K.E. (eds.) Protein Bioinformatics. MMB, vol. 1558, pp. 41–55. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-6783-4_2

    Chapter  Google Scholar 

  26. Razick, S., Močnik, R., Thomas, L.F., Ryeng, E., Drabløs, F., Sætrom, P.: The eGenVar data management system-cataloguing and sharing sensitive data and metadata for the life sciences. Database 2014 (2014)

    Google Scholar 

  27. Rodríguez-Iglesias, A., et al.: Publishing FAIR data: an exemplar methodology utilizing PHI-base. Front. Plant Sci. 7, 641 (2016)

    Article  Google Scholar 

  28. Schaaf, J., et al.: OSSE goes FAIR-implementation of the FAIR data principles for an open-source registry for rare diseases. Stud. Health Technol. Inform. 253, 209–213 (2018)

    Google Scholar 

  29. Silva, L.B., Trifan, A., Oliveira, J.L.: Montra: an agile architecture for data publishing and discovery. Comput. Methods Programs Biomed. 160, 33–42 (2018)

    Article  Google Scholar 

  30. da Silva Santos, L., et al.: FAIR data points supporting big data interoperability. In: Enterprise Interoperability in the Digitized and Networked Factory of the Future. ISTE, London pp. 270–279 (2016)

    Google Scholar 

  31. Stathias, V., et al.: Sustainable data and metadata management at the BD2K-lincs data coordination and integration center. Sci. Data 5, 180117 (2018)

    Article  Google Scholar 

  32. Torre, D., et al.: Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses. Sci. Data 5, 180023 (2018)

    Article  Google Scholar 

  33. Traverso, A., van Soest, J., Wee, L., Dekker, A.: The radiation oncology ontology (ROO): publishing linked data in radiation oncology using semantic web and ontology techniques. Med. Phys. 45(10), e854–e862 (2018)

    Article  Google Scholar 

  34. Trifan, A., Oliveira, J.: FAIRness in biomedical data discovery, pp. 159–166, January 2019. https://doi.org/10.5220/0007576401590166

  35. Trifan, A., Oliveira, J.L.: A FAIR marketplace for biomedical data custodians and clinical researchers. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 188–193. IEEE (2018)

    Google Scholar 

  36. Trifan, A., Oliveira, J.L.: Patient data discovery platforms as enablers of biomedical and translational research: a systematic review. J. Biomed. Inform. 93, 103154 (2019)

    Article  Google Scholar 

  37. Vaccarino, A.L., et al.: Brain-CODE: a secure neuroinformatics platform for management, federation, sharing and analysis of multi-dimensional neuroscience data. Front. Neuroinform. 12, 28 (2018)

    Article  Google Scholar 

  38. Vita, R., Overton, J.A., Mungall, C.J., Sette, A., Peters, B.: FAIR principles and the IEDB: short-term improvements and a long-term vision of obo-foundry mediated machine-actionable interoperability. Database 2018 (2018)

    Google Scholar 

  39. Wang, Z., Lachmann, A., Ma’ayan, A.: Mining data and metadata from the gene expression omnibus. Biophys. Rev. 11(1), 103–110 (2018). https://doi.org/10.1007/s12551-018-0490-8

    Article  Google Scholar 

  40. Wen, C.H., et al.: B-CAN: a resource sharing platform to improve the operation, visualization and integrated analysis of TCGA breast cancer data. Oncotarget 8(65), 108778 (2017)

    Article  Google Scholar 

  41. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016)

    Google Scholar 

  42. Wise, J., et al.: Implementation and relevance of FAIR data principles in biopharmaceutical R&D. Drug Discov. Today 24(4), 933–938 (2019)

    Article  Google Scholar 

  43. Wittig, U., Rey, M., Weidemann, A., Mueller, W.: Data management and data enrichment for systems biology projects. J. Biotechnol. 261, 229–237 (2017)

    Article  Google Scholar 

  44. Yamamoto, Y., Yamaguchi, A., Splendiani, A.: YummyData: providing high-quality open life science data. Database 2018 (2018)

    Google Scholar 

  45. Zaveri, A., et al.: smartAPI: towards a more intelligent network of web APIs. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 154–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_11

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has received support from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 806968 and from the Integrated Programme of SR&TD SOCA (Ref. CENTRO-01-0145-FEDER-000010). The JU receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Trifan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trifan, A., Oliveira, J.L. (2020). Towards a More Reproducible Biomedical Research Environment: Endorsement and Adoption of the FAIR Principles. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics