Skip to main content

Evolutionary Adaptation of the Permanent Replicator System

  • Chapter
  • First Online:
Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment (BIOMAT 2019)

Included in the following conference series:

  • 459 Accesses

Abstract

In this paper, we examine the process of fitness landscape evolution of permanent replicator systems. The central hypothesis of this study is that the specific time of the evolutionary adaptation of the system parameters is much slower than the time of internal evolutionary dynamics. This assumption leads to the fact that evolutionary changes of the system parameters happen in a steady-state of the corresponding dynamical system. To solve this problem, we propose an algorithm such that it is reduced to a linear programming problem at each step. Moreover, we assume that the resources of the system are limited: we formalize it as a restriction on the fitness matrix coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Parker, J.M. Smith, Optimality theory in evolutionary biology. Nature 348(6296), 27 (1990)

    Google Scholar 

  2. A. Grafen, The simplest formal argument for fitness optimization. J. Genet. 87(4), 421–433 (2008)

    Article  MathSciNet  Google Scholar 

  3. A. Grafen, Optimization of inclusive fitness. J. Theor. Biol. 238(3), 541–563 (2006)

    Article  MathSciNet  Google Scholar 

  4. R.A. Fisher, The Genetical Theory of Natural Selection, ed. with a foreword and notes by J.H. Bennett (A complete variorum ed.) (Oxford University Press, Oxford, UK, 1999)

    Google Scholar 

  5. S. Wright, The roles of mutation, inbreeding, crossbreeding and selection, in evolution. Proc. Sixth Int. Congr. Gen. 1, 356–366 (1932)

    Google Scholar 

  6. F.J. Poelwijk, D.J. Kiviet, D.M. Weinreich, S.J. Tans, Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445(7126), 383 (2007)

    Google Scholar 

  7. J. Birch, Natural selection and the maximization of fitness. Biol. Rev. 91(3), 712–727 (2016)

    Article  Google Scholar 

  8. A.S. Bratus, Y.S. Semenov, A.S. Novozhilov, Adaptive fitness landscape for replicator systems: to maximize or not to maximize. Math. Model. Nat. Phenom. 13(3), 25 (2018)

    Google Scholar 

  9. W.J. Ewens, An interpretation and proof of the fundamental theorem of natural selection. Theor. Popul. Biol. 36(2), 167–180 (1989)

    Article  MathSciNet  Google Scholar 

  10. S. Lessard, Fisher’s fundamental theorem of natural selection revisited. Theor. Popul. Biol. 52(2), 119–136 (1997)

    Article  MathSciNet  Google Scholar 

  11. P. Ao, Laws in Darwinian evolutionary theory. Phys. Life Rev. 2(2), 117–156 (2005)

    Article  Google Scholar 

  12. P. Ao, Global view of bionetwork dynamics: adaptive landscape. J. Genet. Genomics 36(2), 63–73 (2009)

    Article  Google Scholar 

  13. W.J. Ewens, S. Lessard, On the interpretation and relevance of the fundamental theorem of natural selection. Theor. Popul. Biol. 104, 59–67 (2015)

    Article  Google Scholar 

  14. A.S. Bratus, S. Drozhzhin, T. Yakushkina, On the evolution of hypercycles. Math. Biosci. 306, 119–125 (2018)

    Article  MathSciNet  Google Scholar 

  15. J. Hofbauer, K. Sigmund, Dynamical Systems and the Theory of Evolution (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  16. P. Schuster, K. Sigmund, Replicator dynamics. J. Theor. Biol. 100(3), 533–538 (1983)

    Article  MathSciNet  Google Scholar 

  17. E.V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution (FT Press, 2011)

    Google Scholar 

  18. M. Eigen, Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)

    Article  Google Scholar 

  19. M. Eigen, P. Schuster, A principle of natural self-organization. Naturwissenschaften 64(11), 541–565 (1977)

    Article  Google Scholar 

  20. N. Vaidya, M.L. Manapat, I.A. Chen, R. Xulvi-Brunet, E.J. Hayden, N. Lehman, Spontaneous network formation among cooperative RNA replicators. Nature 491(7422), 72 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant 19-11-00009 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bratus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bratus, A.S., Drozhzhin, S., Yakushkina, T. (2020). Evolutionary Adaptation of the Permanent Replicator System. In: Mondaini, R.P. (eds) Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment. BIOMAT 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-46306-9_1

Download citation

Publish with us

Policies and ethics