Skip to main content

Development of a 3-D Organoid System Using Human Induced Pluripotent Stem Cells to Model Idiopathic Autism

  • Chapter
  • First Online:
Neurodevelopmental Disorders

Abstract

Autism spectrum condition (ASC) is a complex set of behavioral and neurological responses reflecting a likely interaction between autism susceptibility genes and the environment. Autism represents a spectrum in which heterogeneous genetic backgrounds are expressed with similar heterogeneity in the affected domains of communication, social interaction, and behavior. The impact of gene-environment interactions may also account for differences in underlying neurology and wide variation in observed behaviors. For these reasons, it has been difficult for geneticists and neuroscientists to build adequate systems to model the complex neurobiology causes of autism. In addition, the development of therapeutics for individuals with autism has been painstakingly slow, with most treatment options reduced to repurposed medications developed for other neurological diseases. Adequately developing therapeutics that are sensitive to the genetic and neurobiological diversity of individuals with autism necessitates personalized models of ASC that can capture some common pathways that reflect the neurophysiological and genetic backgrounds of varying individuals. Testing cohorts of individuals with and without autism for these potentially convergent pathways on a scalable platform for therapeutic development requires large numbers of samples from a diverse population. To date, human induced pluripotent stem cells (iPSCs) represent one of the best systems for conducting these types of assays in a clinically relevant and scalable way. The discovery of the four Yamanaka transcription factors (OCT3/4, SOX2, c-Myc, and KLF4) [1] allows for the induction of iPSCs from fibroblasts [2], peripheral blood mononuclear cells (PBMCs, i.e. lymphocytes and monocytes) [3, 4], or dental pulp cells [5] that retain the original genetics of the individual from which they were derived [6], making iPSCs a powerful tool to model neurophysiological conditions. iPSCs are a readily renewable cell type that can be developed on a small scale for boutique-style proof-of-principle phenotypic studies and scaled to an industrial level for drug screening and other high-content assays. This flexibility, along with the ability to represent the true genetic diversity of autism, underscores the importance of using iPSCs to model neurophysiological aspects of ASC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  PubMed  Google Scholar 

  2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    CAS  PubMed  Google Scholar 

  3. DeRosa, B. A., Belle, K. C., Thomas, B. J., Cukier, H. N., Pericak-Vance, M. A., Vance, J. M., et al. (2015). HVGAT-mCherry: A novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells. Molecular and Cellular Neurosciences, 68, 244–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. DeRosa, B. A., Van Baaren, J. M., Dubey, G. K., Lee, J. M., Cuccaro, M. L., Vance, J. M., et al. (2012). Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neuroscience Letters, 516, 9–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Griesi-Oliveira, K., et al. (2015). Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry, 20, 1350–1365.

    CAS  PubMed  Google Scholar 

  6. Abyzov, A., Mariani, J., Palejev, D., Zhang, Y., Haney, M. S., Tomasini, L., et al. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 492, 438–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., et al. (2015). Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports, 4, 25–36.

    CAS  PubMed  Google Scholar 

  8. Gupta, N., Henry, R. G., Strober, J., Kang, S.-M., Lim, D. A., Bucci, M., et al. (2012). Neural stem cell engraftment and myelination in the human brain. Science Translational Medicine, 4, 155ra137.

    PubMed  PubMed Central  Google Scholar 

  9. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J., & Zhang, S.-C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology, 29, 528–534.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinrich, C., Blum, R., Gascón, S., Masserdotti, G., Tripathi, P., Sánchez, R., et al. (2010). Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biology, 8, e1000373.

    PubMed  PubMed Central  Google Scholar 

  11. Kim, D.-S., Ross, P. J., Zaslavsky, K., & Ellis, J. (2014). Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Frontiers in Cellular Neuroscience, 8, 109.

    PubMed  PubMed Central  Google Scholar 

  12. Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., et al. (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell, 12, 573–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S. A., et al. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9, 113–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, M. L., Zang, T., Zou, Y., Chang, J. C., Gibson, J. R., Huber, K. M., et al. (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 4, 1–10.

    Google Scholar 

  15. Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi, Y., Kirwan, P., & Livesey, F. J. (2012a). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7, 1836–1846.

    CAS  PubMed  Google Scholar 

  17. Karus, M., Blaess, S., & Brüstle, O. (2014). Self-organization of neural tissue architectures from pluripotent stem cells. The Journal of Comparative Neurology, 522, 2831–2844.

    CAS  PubMed  Google Scholar 

  18. Pasca, S. P., Panagiotakos, G., & Dolmetsch, R. E. (2014). Generating human neurons in vitro and using them to understand neuropsychiatric disease. Annual Review of Neuroscience, 37, 479–501.

    CAS  PubMed  Google Scholar 

  19. Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19, 1129–1133.

    CAS  PubMed  Google Scholar 

  20. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Espuny-Camacho, I., Michelsen, K. A., Gall, D., Linaro, D., Hasche, A., Bonnefont, J., et al. (2013). Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron, 77, 440–456.

    CAS  PubMed  Google Scholar 

  22. Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., et al. (2013). Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proceedings of the National Academy of Sciences, 110, 20284–20289.

    CAS  Google Scholar 

  23. Krencik, R., & Zhang, S.-C. (2011). Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nature Protocols, 6, 1710–1717.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Maroof, A. M., Keros, S., Tyson, J. A., Ying, S.-W., Ganat, Y. M., Merkle, F. T., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12, 559–572.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nestor, M. W., Jacob, S., Sun, B., Prè, D., Sproul, A. A., Hong, S. I., et al. (2015). Characterization of a subpopulation of developing cortical interneurons from human iPSCs within serum-free embryoid bodies. American Journal of Physiology. Cell Physiology, 308, C209–C219.

    CAS  PubMed  Google Scholar 

  26. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C., & Livesey, F. J. (2012b). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neuroscience, 15, 477–486.

    CAS  PubMed  Google Scholar 

  27. Woodard, C. M., et al. (2014). iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Reports, 9, 1173–1182.

    CAS  PubMed  Google Scholar 

  28. Abbott, A. (2003). Biology’s new dimension. Nature, 424, 870–872.

    CAS  PubMed  Google Scholar 

  29. Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3-D culture. Nature Methods, 12, 671–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelava, I., & Lancaster, M. A. (2016). Stem cell models of human brain development. Cell Stem Cell, 18, 736–748.

    CAS  PubMed  Google Scholar 

  31. Sasai, Y. (2013). Next-generation regenerative medicine: Organogenesis from stem cells in 3-D culture. Cell Stem Cell, 12, 520–530.

    CAS  PubMed  Google Scholar 

  32. Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., et al. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neuroscience, 8, 288–296.

    CAS  PubMed  Google Scholar 

  33. Ying, Q.-L., Stavridis, M., Griffiths, D., Li, M., & Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology, 21(2), 183–186.

    CAS  PubMed  Google Scholar 

  34. Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., Van Den Ameele, J., et al. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature, 455, 351–357.

    CAS  PubMed  Google Scholar 

  35. Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., et al. (2008). Self-organized formation of polarized cortical tissues from ESCS and its active manipulation by extrinsic signals. Cell Stem Cell, 3, 519–532.

    CAS  PubMed  Google Scholar 

  36. Nestor, M. W., Phillips, A. W., Artimovich, E., Nestor, J. E., Hussman, J. P., & Blatt, G. J. (2016). Human inducible pluripotent stem cells and autism spectrum disorder: Emerging technologies. Autism Research, 9, 513–535.

    PubMed  Google Scholar 

  37. Mariani, J., Vittoria, M., Palejev, D., Tomasini, L., Coppola, G., Szekely, A. M., et al. (2012). Modeling human cortical development in vitro using induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 109, 12770–12775.

    CAS  Google Scholar 

  38. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162, 375–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Phillips, A. W., Nestor, J. E., & Nestor, M. W. (2017). Developing HiPSC derived serum free embryoid bodies for the interrogation of 3-D stem cell cultures using physiologically relevant assays. Journal of Visualized Experiments, 125, 55799.

    Google Scholar 

  40. Nestor, M. W., Paull, D., Jacob, S., Sproul, A. A., Alsaffar, A., Campos, B. A., et al. (2013). Differentiation of serum-free embryoid bodies from human induced pluripotent stem cells into networks. Stem Cell Research, 10, 454–463.

    CAS  PubMed  Google Scholar 

  41. Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9, 2329–2340.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.

    CAS  PubMed  Google Scholar 

  43. Qian, X., et al. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 165, 1238–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Marchetto, M. C. N., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Flaherty, E., Deranieh, R. M., Artimovich, E., Lee, I. S., Siegel, A. J., Levy, D. L., et al. (2017). Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ Schizophrenia, 3, 35.

    PubMed  PubMed Central  Google Scholar 

  46. Derosa, B. A., El Hokayem, J., Artimovich, E., Garcia-Serje, C., Phillips, A. W., Van Booven, D., et al. (2018). Convergent pathways in idiopathic autism revealed by time course transcriptomic analysis of patient-derived neurons. Scientific Reports, 8, 1–15.

    CAS  Google Scholar 

  47. Kolevzon, A. (2013). A pilot treatment study of insulin-like growth factor-1 (IGF-1) in autism spectrum disorder. Retrieved from https://clinicaltrials.gov/ct2/show/NCT01970345

  48. Tang, X., Kim, J., Zhou, L., Wengert, E., Zhang, L., Wu, Z., et al. (2016). KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proceedings of the National Academy of Sciences, 113, 751–756.

    CAS  Google Scholar 

  49. Marchetto, M. C., et al. (2017). Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 22, 820–835.

    CAS  PubMed  Google Scholar 

  50. Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C., & Nicoll, R. A. (1998). Postsynaptically silent synapses in single neuron cultures. Neuron, 21, 1443–1451.

    CAS  PubMed  Google Scholar 

  51. Flames, N., Pla, R., Gelman, D. M., Rubenstein, J. L. R., Puelles, L., & Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of Neuroscience, 27, 9682–9695.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanatani, S., Yozu, M., Tabata, H., & Nakajima, K. (2008). COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. The Journal of Neuroscience, 28, 13582–13591.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gonchar, Y., & Burkhalter, A. (1999). Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cerebral Cortex, 9, 683–696.

    CAS  PubMed  Google Scholar 

  54. Anderson, S. A., Kaznowski, C. E., Horn, C., Rubenstein, J. L. R., & McConnell, S. K. (2002). Distinct origins of neocortical projection neurons and interneurons in vivo. Cerebral Cortex, 12, 702–709.

    PubMed  Google Scholar 

  55. Valcanis, H., & Tan, S.-S. (2003). Layer specification of transplanted interneurons in developing mouse neocortex. The Journal of Neuroscience, 23, 5113–5122.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G., & Alvarez-Buylla, A. (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neuroscience, 2, 461–466.

    CAS  PubMed  Google Scholar 

  57. Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31, 247–248.

    CAS  PubMed  Google Scholar 

  58. Hussman, J. P. (2007). The gap between intention and action: Altered connectivity and GABA-mediated synchrony in autism. In E. B. Torres & C. Whyatt (Eds.), Autism: The movement sensing perspective. New York: CRC Press.

    Google Scholar 

  59. Selten, M., van Bokhoven, H., & Nadif Kasri, N. (2018). Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research, 7, 23.

    PubMed  PubMed Central  Google Scholar 

  60. Lee, E., Lee, J., & Kim, E. (2017). Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biological Psychiatry, 81, 838–847.

    PubMed  Google Scholar 

  61. Cao, W., Lin, S., Qiang, X., Lan, D. Y., Yang, Q., Ying, Z. M., et al. (2018). Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron, 97, 1394.

    CAS  PubMed  Google Scholar 

  62. Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., et al. (2015). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. Journal of Autism and Developmental Disorders, 45(2), 395–405. https://doi.org/10.1007/s10803-013-1904-x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8, 1–9.

    Google Scholar 

  64. Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62, 192–197.

    PubMed  Google Scholar 

  65. Jacob, J. (2016). Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders. Epilepsia, 57, 182–193.

    CAS  PubMed  Google Scholar 

  66. Zhu, Y. (2004). Chandelier cells control excessive cortical excitation: characteristics of Whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. The Journal of Neuroscience, 24, 5101–5108.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Boutin, M. E., Voss, T. C., Titus, S. A., Cruz-Gutierrez, K., Michael, S., & Ferrer, M. (2018). A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3-D culture models. Scientific Reports, 8, 1–14.

    CAS  Google Scholar 

  68. Esner, M., Meyenhofer, F., & Bickle, M. (2018). Live-cell high content screening in drug development. Methods in Molecular Biology, 1683, 149–164.

    CAS  PubMed  Google Scholar 

  69. Smietana, K., Siatkowski, M., & Møller, M. (2016). Trends in clinical success rates. Nature Reviews. Drug Discovery, 15, 379–380.

    CAS  PubMed  Google Scholar 

  70. Chen, Y. Y., Silva, P. N., Syed, A. M., Sindhwani, S., Rocheleau, J. V., & Chan, W. C. W. (2016). Clarifying intact 3-D tissues on a microfluidic chip for high-throughput structural analysis. Proceedings of the National Academy of Sciences, 113, 14915–14920.

    CAS  Google Scholar 

  71. Giuliano, K. A., DeBiasio, R. L., Dunlay, R. T., Gough, A., Volosky, J. M., Zock, J., et al. (1997). High-content screening: A new approach to easing key bottlenecks in the drug discovery process. Journal of Biomolecular Screening, 2, 249–259.

    CAS  Google Scholar 

  72. Egner, A., & Hell, S. (2006). Aberrations in confocal and multi-photon fluorescence microscopy induced by refractive index mismatch. In J. B. Pawley (Ed.), Handbook of biological confocal microscopy (pp. 404–413). New York: Springer.

    Google Scholar 

  73. Pampaloni, F., Ansari, N., & Stelzer, E. H. K. (2013). High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and Tissue Research, 352, 161–177.

    PubMed  Google Scholar 

  74. Boutin, M. E., & Hoffman-Kim, D. (2015). Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres. Tissue Engineering. Part C, Methods, 21, 292–302.

    CAS  PubMed  Google Scholar 

  75. Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine and Biology, 58(11), R37–R61.

    PubMed  Google Scholar 

  76. Morris, R. G. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. The Journal of Neuroscience, 9, 3040–3057.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Honoré, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D., et al. (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science, 241, 701–703.

    PubMed  Google Scholar 

  78. Crossman, A. R., Walker, R. J., & Woodruff, G. N. (1973). Picrotoxin antagonism of gamma-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra. British Journal of Pharmacology, 49, 696–698.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives in Biology, 4, a009886.

    PubMed  PubMed Central  Google Scholar 

  80. Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    CAS  PubMed  Google Scholar 

  81. Cooke, S. F. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.

    CAS  PubMed  Google Scholar 

  82. Molnar, E. (2011). Long-term potentiation in cultured hippocampal neurons. Seminars in Cell & Developmental Biology, 22, 506–513.

    CAS  Google Scholar 

  83. Musleh, W., Bi, X., Tocco, G., Yaghoubi, S., & Baudry, M. (1997). Glycine-induced long-term potentiation is associated with structural and functional modifications of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptors. Proceedings of the National Academy of Sciences of the United States of America, 94, 9451–9456.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, L. J., Hu, R., Lujan, B., Chen, J., Zhang, J. J., Nakano, Y., et al. (2016). Glycine potentiates AMPA receptor function through metabotropic activation of GluN2A-containing NMDA receptors. Frontiers in Molecular Neuroscience, 9, 102. https://doi.org/10.3389/fnmol.2016.00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shew, W. L., Bellay, T., & Plenz, D. (2010). Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity. Journal of Neuroscience Methods, 192, 75–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, T. W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sproul, A. A., Jacob, S., Pre, D., Kim, S. H., Nestor, M. W., Navarro-Sobrino, M., et al. (2014). Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One, 9(1), e84547.

    PubMed  PubMed Central  Google Scholar 

  88. Artimovich, E., Jackson, R. K., Kilander, M. B. C., Lin, Y. C., & Nestor, M. W. (2017). PeakCaller: An automated graphical interface for the quantification of intracellular calcium obtained by high-content screening. BMC Neuroscience, 18(1), 72.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Rania Deranieh and Omotayo Oduwole for technical assistance. We also like to thank Dr. John Hussman and Elizabeth Benevides for comments and reviews of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Nestor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lunden, J.W. et al. (2020). Development of a 3-D Organoid System Using Human Induced Pluripotent Stem Cells to Model Idiopathic Autism. In: DiCicco-Bloom, E., Millonig, J. (eds) Neurodevelopmental Disorders . Advances in Neurobiology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-45493-7_10

Download citation

Publish with us

Policies and ethics