Skip to main content

Geometric Derivation and Analysis of Multi-Symplectic Numerical Schemes for Differential Equations

  • Chapter
  • First Online:
Computational Mathematics and Variational Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 159))

  • 824 Accesses

Abstract

In the current work we present a class of numerical techniques for the solution of multi-symplectic PDEs arising at various physical problems. We first consider the advantages of discrete variational principles and how to use them in order to create multi-symplectic integrators. We then consider the nonstandard finite difference framework from which these integrators derive. The latter is now expressed at the appropriate discrete jet bundle, using triangle and square discretization. The preservation of the discrete multi-symplectic structure by the numerical schemes is shown for several one- and two-dimensional test cases, like the linear wave equation and the nonlinear Klein–Gordon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numerica 12, 399 (2003)

    Article  MathSciNet  Google Scholar 

  2. J.E. Marsden, G.W. Patrick, S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351 (1998).

    Article  MathSciNet  Google Scholar 

  3. J.E. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numerica 10, 357 (2001)

    Article  MathSciNet  Google Scholar 

  4. A.P. Veselov, Integrable discrete-time systems and difference operators. Funkts. Anal. Prilozhen. 22, 1 (1988)

    Article  MathSciNet  Google Scholar 

  5. A.P. Veselov, Integrable Lagrangian correspondences and the factorization of matrix polynomials. Funkts. Anal. Prilozhen. 25, 38 (1991)

    MathSciNet  MATH  Google Scholar 

  6. T.J. Bridges, Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 1 (1997)

    Article  MathSciNet  Google Scholar 

  7. T.J. Bridges, S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284, 4–5 (2001)

    Article  MathSciNet  Google Scholar 

  8. T.J. Bridges, S. Reich, Numerical methods for Hamiltonian PDEs. J. Phys. 39, 19 (2006)

    MathSciNet  MATH  Google Scholar 

  9. R.E. Mickens, Applications of Nonstandard Finite Difference Schemes (World Scientific Publishing, Singapore, 2000)

    Book  Google Scholar 

  10. R.E. Mickens, Nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 8, 823 (2002)

    Article  MathSciNet  Google Scholar 

  11. R.E. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11, 645 (2005)

    Article  MathSciNet  Google Scholar 

  12. O.T. Kosmas, D. Papadopoulos, Multisymplectic structure of numerical methods derived using nonstandard finite difference schemes. J. Phys. Conf. Ser. 490 (2014)

    Google Scholar 

  13. O.T. Kosmas, Charged particle in an electromagnetic field using variational integrators. Numer. Anal. Appl. Math. 1389, 1927 (2011)

    Google Scholar 

  14. O.T. Kosmas, S. Leyendecker, Analysis of higher order phase fitted variational integrators. Adv. Comput. Math. 42, 605 (2016)

    Article  MathSciNet  Google Scholar 

  15. O.T. Kosmas, D.S. Vlachos, Local path fitting: a new approach to variational integrators. J. Comput. Appl. Math. 236, 2632 (2012)

    Article  MathSciNet  Google Scholar 

  16. O.T. Kosmas, S. Leyendecker, Variational integrators for orbital problems using frequency estimation. Adv. Comput. Math. 45, 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  17. O.T. Kosmas, D.S. Vlachos, Phase-fitted discrete Lagrangian integrators. Comput. Phys. Commun. 181, 562–568 (2010)

    Article  MathSciNet  Google Scholar 

  18. O.T. Kosmas, S. Leyendecker, Phase lag analysis of variational integrators using interpolation techniques. Proc. Appl. Math. Mech. 12, 677–678 (2012)

    Article  Google Scholar 

  19. O.T. Kosmas, S. Leyendecker, Stability analysis of high order phase fitted variational integrators. Proceedings of WCCM XI – ECCM V – ECFD VI, vol. 1389 (2014), pp. 865–866

    MATH  Google Scholar 

  20. O.T. Kosmas, S. Leyendecker, Family of high order exponential variational integrators for split potential systems. J. Phys. Conf. Ser. 574 (2015)

    Google Scholar 

  21. O.T. Kosmas, D.S. Vlachos, A space-time geodesic approach for phase fitted variational integrators. J. Phys. Conf. Ser. 738 (2016)

    Google Scholar 

  22. L. Brusca, L. Nigro, A one-step method for direct integration of structural dynamic equations. Int. J. Numer. Methods Eng. 15, 685–699 (1980)

    Article  Google Scholar 

  23. L.C. Evans, Partial Differential Equations (American Mathematical Society, Providence, 1998)

    MATH  Google Scholar 

  24. V.I. Arnold, Lectures on Partial Differential Equations (Springer, Berlin, 2000)

    Google Scholar 

  25. H. Han, Z. Zhang, Split local absorbing conditions for one-dimensional nonlinear Klein-Gordon equation on unbounded domain. J. Comput. Phys. 227, 8992 (2008)

    Article  MathSciNet  Google Scholar 

  26. J.W. Thomas, Numerical Partial Differential Equations, vol. 1. Finite Difference Methods (Springer, New York, 1995)

    Google Scholar 

  27. J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems (Chapman & Hall, London, 1994)

    Book  Google Scholar 

  28. J.M. Sanz-Serna, Solving numerically Hamiltonian systems. In: Proceedings of the International Congress of Mathematicians (Birkhäuser, Basel, 1995)

    Google Scholar 

  29. S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473 (2000)

    Article  MathSciNet  Google Scholar 

  30. C.J. Cotter, D.D. Holm, P.E. Hydon, Multisymplectic formulation of fluid dynamics using the inverse map. Proc. R. Soc. A 463, 2671 (2007)

    Article  MathSciNet  Google Scholar 

  31. D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J.E. Marsden, M. Desbrun, Structure-preserving discretization of incompressible fluids. Physica D 240, 443 (2011)

    Article  MathSciNet  Google Scholar 

  32. E. Hairer, C. Lubich, Invariant tori of dissipatively perturbed Hamiltonian systems under symplectic discretization. Appl. Numer. Math 29, 57–71 (1999)

    Article  MathSciNet  Google Scholar 

  33. D. Stoffer, On the qualitative behaviour of symplectic integrators. III: Perturbed integrable systems. J. Math. Anal. Appl. 217, 521–545 (1998)

    MathSciNet  MATH  Google Scholar 

  34. D. Papadopoulos, M.A. Voda, S. Stapf, F. Casanova, M. Behr, B. BlĂĽmich, Magnetic field simulations in support of interdiffusion quantification with NMR. Chem. Eng. Sci. 63, 4694 (2008)

    Article  Google Scholar 

  35. D. Papadopoulos, M. Herty, V. Rath, M. Behr, Identification of uncertainties in the shape of geophysical objects with level sets and the adjoint method. Comput. Geosci. 15, 737 (2011)

    Article  Google Scholar 

  36. W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 1 (1961)

    Article  MathSciNet  Google Scholar 

  37. P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 2 (1979)

    Article  MathSciNet  Google Scholar 

  38. B. GarcĂ­a-Archilla, M.J. Sanz-Serna, R.D. Skeel, Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 3 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Dr. Odysseas Kosmas wishes to acknowledge the support of EPSRC via grand EP/N026136/1 “Geometric Mechanics of Solids.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odysseas Kosmas .

Editor information

Editors and Affiliations

Appendix

Appendix

By denoting sinc\((\xi )=\sin {}(\xi )/\xi \), special cases of the exponential integrators described using (10) can be obtained, i.e.,

  • Gautschi type exponential integrators [36] for

    $$\displaystyle \begin{aligned} \psi(\varOmega h)=\text{sinc}^2\left(\frac{\varOmega h}{2}\right), \qquad \phi(\varOmega h)=1 \end{aligned}$$
  • Deuflhard type exponential integrators [37] for

    $$\displaystyle \begin{aligned} \psi(\varOmega h)=\text{sinc}(\varOmega h), \qquad \phi(\varOmega h)=1 \end{aligned}$$
  • GarcĂ­a-Archilla et al. type exponential integrators [38] for

    $$\displaystyle \begin{aligned} \psi(\varOmega h)=\text{sinc}^2(\varOmega h), \qquad \phi(\varOmega h)=\text{sinc}(\varOmega h) \end{aligned}$$

Finally, in [1] a way to write the Störmer–Verlet algorithm as an exponential integrators is presented.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosmas, O., Papadopoulos, D., Vlachos, D. (2020). Geometric Derivation and Analysis of Multi-Symplectic Numerical Schemes for Differential Equations. In: Daras, N., Rassias, T. (eds) Computational Mathematics and Variational Analysis. Springer Optimization and Its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-44625-3_12

Download citation

Publish with us

Policies and ethics