Skip to main content

Benchmark Problems for AAR FEA Code Validation

  • Chapter
  • First Online:
Diagnosis & Prognosis of AAR Affected Structures

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 31))

  • 286 Accesses

Abstract

A number of structures worldwide are known to (or will) suffer from chemically induced expansion of the concrete. This includes not only the traditional alkali aggregate reaction (also known as alkali silica reaction) but increasingly delayed ettringite formation (DEF)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is well known that DEF is often associated with AAR, however it is increasingly observed that it can occur by itself in massive concrete structure subjected to early age high temperature and under high relative humidity (above 95%).

  2. 2.

    The sixth (Salzburg) and the eighth (Wuhan) benchmarks invited participants to analyze Pian Telessio and Poglia dams respectively. There was no submission to the former, and only two for the second.

  3. 3.

    There is no general agreement on the importance of all these parameters, the list is intended to be inclusive of all those perceived by researchers to be worth examining.

  4. 4.

    These parameters should be used in all subsequent test problems.

  5. 5.

    In a finite element analysis, point from which we determine computed values are commonly referred to as “recorders”.

References

  1. Fasseu, P., Mahut, B.: Aide à la gestion des ouvrages atteints de reactions de gonflement interne. Technical report, 66 pp. Laboratoire Central des Ponts et Chaussées, Paris, France (2003). http://www.ifsttar.fr/fileadmin/user_upload/editions/lcpc/GuideTechnique/GuideTechnique-LCPC-GONFLIN.pdf

  2. Sellier, A., Bourdarot, E., Multon, S., Cyr, M., Grimal, E.: Combination of structural monitoring and laboratory tests for assessment of alkali-aggregate reaction swelling: application to gate structure dam. ACI Mater. J. 106(3), 281–290 (2009)

    Google Scholar 

  3. Saouma, V., Perotti, L.: Constitutive model for alkali aggregate reactions. ACI Mater. J. 103(3), 194–202 (2006)

    Google Scholar 

  4. Institution of Structural Engineers: Structural effects of alkali-silica reaction. Technical guidance on the appraisal of existing structures. Technical report, Report of an ISE task group (1992)

    Google Scholar 

  5. Capra, B., Sellier, A.: Orthotropic modeling of alkali-aggregate reaction in concrete structures: numerical simulations. Mech. Mater. 35, 817–830 (2003)

    Article  Google Scholar 

  6. Multon, S., Toutlemonde, F.: Effect of applied stresses on alkali-silica reaction induced expansions. Cem. Concr. Res. 36(5), 912–920 (2006)

    Article  Google Scholar 

  7. Larive, C.: Apports combinés de l’expérimentation et de la modélisation à la compréhension de l’alcali-réaction et de ses effets mécaniques. Technical report OA28, 404 pp. Laboratoire Central des Ponts et Chaussées (1998)

    Google Scholar 

  8. Poole, A.: Introduction to alkali-aggregate reaction in concrete. In: Swamy, R. (ed.) The Alkali-Silica Reaction in Concrete, pp. 1–28. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  9. Multon, S., Seignol, J., Toutlemonde, F.: Structural behavior of concrete beams affected by alkali-silica reaction. ACI Mater. J. 102(2), 67 (2005)

    Google Scholar 

  10. Charlwood, R.G., Steele, R., Solymar, S.V., Curtis, D.D.: A review of alkali aggregate reactions in hydroelectric plants and dams. In: CEA and CANCOLD (eds.) Proceedings of the International Conference of Alkali-Aggregate Reactions in Hydroelectric Plants and Dams, pp. 1–29. Fredericton, Canada (1992)

    Google Scholar 

  11. Léger, P., Côte, P., Tinawi, R.: Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams. Comput. Struct. 60(4), 601–611 (1996)

    Article  Google Scholar 

  12. Multon, S.: Evaluation expérimentale et théorique des effets mécaniques de l’alcali-réaction sur des structures modéles. Technical report. Etudes et recherches des Laboratoires des ponts et chaussées, Série Ouvrages d’art OA46 (2004)

    Google Scholar 

  13. Newell, V., Wagner, C.: Fontana dam: a crack in the curve. In: Waterpower’ 99: Hydro’s Future: Technology, Markets, and Policy, pp. 1–10 (1999)

    Google Scholar 

  14. Caron, P., Léger, P., Tinawi, R., Veilleux, M.: Slot cutting of concrete dams: field observations and complementary experimental studies. Struct. J. 100(4), 430–439 (2003)

    Google Scholar 

  15. Gilks, P., Curtis, D.: Dealing with the effects of AAR on the water retaining structures at Mactaquac GS. In: Proceedings of the 21st Congress on Large Dams, Montreal, Canada, pp. 681–703 (2003)

    Google Scholar 

  16. Metalssi, O., Seignol, J., Rigobert, S., Toutlemonde, F.: Modeling the cracks opening-closing and possible remedial sawing operation of AAR affected dams. Eng. Fail. Anal. 36, 199–214 (2014)

    Article  Google Scholar 

  17. Hayes, N., Gui, Q., Abd-Elssamd, A., Le Pape, Y., Giorla, A., Le Pape, S., Giannini, E.R., Ma, Z.: Monitoring alkali-silica reaction significance in nuclear concrete structural members. J. Adv. Concr. Technol. 16(4), 179–190 (2018)

    Article  Google Scholar 

  18. NUREG/CR-6706: NUREG/CR-6706: Capacity of Steel and Concrete Containment Vessels with Corrosion Damage (2001). http://pbadupws.nrc.gov/docs/ML0110/ML011070123.pdf

  19. Larive, C.: Apports Combinés de l’Experimentation et de la Modélisation à la Comprehension del’Alcali-Réaction et de ses Effets Mécaniques. Ph.D. thesis. Laboratoire Central des Ponts et Chaussées, Paris (1998). http://hal.inria.fr/docs/00/52/06/76/PDF/1997THLARIVECNS20683.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Saouma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saouma, V., Sellier, A., Multon, S., Le Pape, Y. (2021). Benchmark Problems for AAR FEA Code Validation. In: Saouma, V.E. (eds) Diagnosis & Prognosis of AAR Affected Structures. RILEM State-of-the-Art Reports, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-44014-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44014-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44013-8

  • Online ISBN: 978-3-030-44014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics