Skip to main content

On the Stochastic End-to-End Delay Analysis in Sink Trees Under Independent and Dependent Arrivals

  • Conference paper
  • First Online:
Measurement, Modelling and Evaluation of Computing Systems (MMB 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12040))

Abstract

Sink trees are a frequent topology in many networked systems; typical examples are multipoint-to-point label switched paths in Multiprotocol Label Switching networks or wireless sensor networks with sensor nodes reporting to a base station. In this paper, we compute end-to-end delay bounds using a stochastic network calculus approach for a flow traversing a sink tree.

For n servers with one flow of interest and n cross-flows, we derive solutions for a general class of arrivals with moment-generating function bounds. Comparing algorithms known from the literature, our results show that, e.g., pay multiplexing only once has to consider less stochastic dependencies in the analysis.

In numerical experiments, we observe that the reduced dependencies to consider, and therefore less applications of Hölder’s inequality, lead to a significant improvement of delay bounds with fractional Brownian motion as a traffic model. Finally, we also consider a sink tree with dependent cross-flows and evaluate the impact on the delay bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Hoboken (1992)

    MATH  Google Scholar 

  2. Beck, M.: Towards the analysis of transient phases with stochastic network calculus. In: IEEE 17th International Network Strategy and Planning Symposium (Networks 2016) (2016)

    Google Scholar 

  3. Beck, M.A.: Advances in theory and applicability of stochastic network calculus. Ph.D. thesis, TU Kaiserslautern (2016)

    Google Scholar 

  4. Becker, N., Fidler, M.: A non-stationary service curve model for performance analysis of transient phases. In: 2015 27th International Teletraffic Congress, pp. 116–124. IEEE (2015)

    Google Scholar 

  5. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Quality and cost of deterministic network calculus - design and evaluation of an accurate and fast analysis. Proc. ACM Meas. Anal. Comput. Syst. (POMACS) 1(1), 34 (2017)

    Google Scholar 

  6. Bouillard, A., Comte, C., de Panafieu, É., Mathieu, F.: Of kernels and queues: when network calculus meets analytic combinatorics. In: 2018 30th International Teletraffic Congress (ITC 30), vol. 2, pp. 49–54. IEEE (2018)

    Google Scholar 

  7. Bouillard, A., Thierry, É.: Tight performance bounds in the worst-case analysis of feed-forward networks. Discrete Event Dyn. Syst. 26(3), 383–411 (2016)

    Article  MathSciNet  Google Scholar 

  8. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (IIOT): an analysis framework. Comput. Ind. 101, 1–12 (2018)

    Article  Google Scholar 

  9. Burchard, A., Liebeherr, J., Ciucu, F.: On superlinear scaling of network delays. IEEE/ACM Trans. Netw. 19(4), 1043–1056 (2010)

    Article  Google Scholar 

  10. Champati, J.P., Al-Zubaidy, H., Gross, J.: Transient delay bounds for multi-hop wireless networks. CoRR (2018)

    Google Scholar 

  11. Chang, C.S.: Stability, queue length, and delay of deterministic and stochastic queueing networks. IEEE Trans. Autom. Control 39(5), 913–931 (1994)

    Article  MathSciNet  Google Scholar 

  12. Chang, C.S.: Performance Guarantees in Communication Networks. Springer, London (2000). https://doi.org/10.1007/978-1-4471-0459-9

    Book  MATH  Google Scholar 

  13. Ciucu, F., Burchard, A., Liebeherr, J.: Scaling properties of statistical end-to-end bounds in the network calculus. IEEE Trans. Inf. Theory 52(6), 2300–2312 (2006)

    Article  MathSciNet  Google Scholar 

  14. Ciucu, F., Schmitt, J.: Perspectives on network calculus - no free lunch, but still good value. In: Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM 2012), New York, NY, USA, pp. 311–322 (2012)

    Google Scholar 

  15. Cruz, R.L.: Quality of service management in integrated services networks. In: Proceedings of the Semi-Annual Research Review, CWC, UCSD (1996)

    Google Scholar 

  16. Dong, F., Wu, K., Srinivasan, V.: Copula analysis for statistical network calculus. In: Proceedings of the IEEE INFOCOM 2015, pp. 1535–1543 (2015)

    Google Scholar 

  17. Fettweis, G.P.: The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014)

    Article  Google Scholar 

  18. Fidler, M.: An end-to-end probabilistic network calculus with moment generating functions. In: Proceedings of the IEEE IWQoS 2006, pp. 261–270 (2006)

    Google Scholar 

  19. Fidler, M., Rizk, A.: A guide to the stochastic network calculus. IEEE Commun. Surv. Tutor. 17(1), 92–105 (2015)

    Article  Google Scholar 

  20. Fonseca, N.L., Mayor, G.S., Neto, C.A.: On the equivalent bandwidth of self-similar sources. ACM Trans. Model. Comput. Simul. (TOMACS) 10(2), 104–124 (2000)

    Article  Google Scholar 

  21. Jafari, F., Lu, Z., Jantsch, A., Yaghmaee, M.H.: Buffer optimization in network-on-chip through flow regulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(12), 1973–1986 (2010)

    Article  Google Scholar 

  22. Jasperneite, J., Neumann, P., Theis, M., Watson, K.: Deterministic real-time communication with switched ethernet. In: 4th IEEE International Workshop on Factory Communication Systems, pp. 11–18. IEEE (2002)

    Google Scholar 

  23. Jiang, Y., Liu, Y.: Stochastic Network Calculus, vol. 1. Springer, London (2008). https://doi.org/10.1007/978-1-84800-127-5

    Book  MATH  Google Scholar 

  24. Kelly, F.P.: Notes on effective bandwidths. In: Kelly, F.P., Zachary, S., Ziedins, I. (eds.) Stochastic Networks: Theory and Applications. Royal Statistical Society Lecture Notes Series, vol. 4, pp. 141–168. Oxford University Press, Oxford (1996)

    Google Scholar 

  25. Koubaa, A., Alves, M., Tovar, E.: Modeling and worst-case dimensioning of cluster-tree wireless sensor networks. In: 2006 27th IEEE International Real-Time Systems Symposium (RTSS 2006), pp. 412–421. IEEE (2006)

    Google Scholar 

  26. Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomputing. IEEE Trans. Comput. 100(10), 892–901 (1985)

    Article  Google Scholar 

  27. Li, C., Burchard, A., Liebeherr, J.: A network calculus with effective bandwidth. IEEE/ACM Trans. Netw. 15(6), 1442–1453 (2007)

    Article  Google Scholar 

  28. Liebeherr, J., Burchard, A., Ciucu, F.: Delay bounds in communication networks with heavy-tailed and self-similar traffic. IEEE Trans. Inf. Theory 58(2), 1010–1024 (2012)

    Article  MathSciNet  Google Scholar 

  29. Mellia, M., Stoica, I., Zhang, H.: Tcp model for short lived flows. IEEE Commun. Lett. 6(2), 85–87 (2002)

    Article  Google Scholar 

  30. Mitrinovic, D.S., Vasic, P.M.: Analytic Inequalities, vol. 1. Springer, Heidelberg (1970)

    Book  Google Scholar 

  31. Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2426-4

    Book  MATH  Google Scholar 

  32. Nikolaus, P., Schmitt, J.: On per-flow delay bounds in tandem queues under (in)dependent arrivals. In: Proceedings of 16th IFIP Networking 2017 Conference (NETWORKING 2017). IEEE (2017)

    Google Scholar 

  33. Nikolaus, P., Schmitt, J., Ciucu, F.: Dealing with dependence in stochastic network calculus - using independence as a bound. Technical report, 394/19, TU Kaiserslautern, Department of Computer Science (2019). https://disco.cs.uni-kl.de/discofiles/publicationsfiles/NSC19-1_TR.pdf

  34. Nikolaus, P., Schmitt, J., Schütze, M.: h-Mitigators: improving your stochastic network calculus output bounds. Comput. Commun. 144, 188–197 (2019)

    Article  Google Scholar 

  35. Norros, I.: On the use of fractional Brownian motion in the theory of connectionless networks. IEEE J. Sel. Areas Commun. 13(6), 953–962 (1995)

    Article  Google Scholar 

  36. Qian, Z., Bogdan, P., Tsui, C.Y., Marculescu, R.: Performance evaluation of NoC-based multicore systems: From traffic analysis to noc latency modeling. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 21(3), 52 (2016)

    Google Scholar 

  37. Rizk, A., Fidler, M.: Leveraging statistical multiplexing gains in single-and multi-hop networks. In: Proceedings of the IEEE Nineteenth IEEE International Workshop on Quality of Service (IWQoS 2011), pp. 1–9 (2011)

    Google Scholar 

  38. Rizk, A., Fidler, M.: Non-asymptotic end-to-end performance bounds for networks with long range dependent fbm cross traffic. Comput. Netw. 56(1), 127–141 (2012)

    Article  Google Scholar 

  39. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol label switching architecture. RFC 3031, RFC Editor (2001)

    Google Scholar 

  40. Schmitt, J., Bondorf, S., Poe, W.Y.: The sensor network calculus as key to the design of wireless sensor networks with predictable performance. J. Sensor Actuator Netw. 6(3), 21 (2017)

    Article  Google Scholar 

  41. Schmitt, J., Zdarsky, F.A., Fidler, M.: Delay bounds under arbitrary multiplexing: When network calculus leaves you in the lurch ... In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM 2008), Phoenix, AZ, USA, pp. 1669–1677 (2008)

    Google Scholar 

  42. Schmitt, J., Zdarsky, F.A., Martinovic, I.: Improving performance bounds in feed-forward networks by paying multiplexing only once. In: Proceedings of the GI/ITG Conference on Measurement, Modeling, and Evaluation of Computer and Communication Systems (MMB 2008), pp. 1–15 (2008)

    Google Scholar 

  43. Singla, A., Chandrasekaran, B., Godfrey, P.B., Maggs, B.: The internet at the speed of light. In: Proceedings of the ACM Workshop on Hot Topics in Networks 2014, pp. 1–7. HotNets-XIII (2014)

    Google Scholar 

  44. Wang, H., Shen, H., Wieder, P., Yahyapour, R.: A data center interconnects calculus. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2018)

    Google Scholar 

  45. Yaron, O., Sidi, M.: Performance and stability of communication networks via robust exponential bounds. IEEE/ACM Trans. Netw. 1(3), 372–385 (1993)

    Article  Google Scholar 

  46. Zhu, T., Berger, D.S., Harchol-Balter, M.: SNC-meister: admitting more tenants with tail latency SLOs. In: Proceedings of the ACM Symposium on Cloud Computing (SoCC 2016), pp. 374–387 (2016)

    Google Scholar 

  47. Zografos, K.G., Androutsopoulos, K.N., Vasilakis, G.M.: A real-time decision support system for roadway network incident response logistics. Transp. Res. Part C: Emerg. Technol. 10(1), 1–18 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schmitt .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Proof of Proposition 3

Proof

We prove the theorem via induction. The base case \( n = 2 \) is already treated in Subsect. 3.1.

Assume now that the induction hypothesis (IH) is true for some \( n \in \mathbb {N}. \) We denote the end-to-end service of tandems of length n by \( S_{\mathrm {e2e}}^n \). Observe that extending the sink tree basically means that we prolong all flows and add one flow that only traverses the last hop. Therefore, we apply the induction hypothesis on the last server n servers \( S_2, \dots , S_{n+1} \) and receive \( S_{\mathrm {e2e}}^n \). Afterwards, we basically apply the base case, as the network is reduced to the network consisting of \( S_1\) and \(S_{\mathrm {e2e}}^n \). This gives

$$\begin{aligned} S_{\mathrm {e2e}}^{n+1} =&\left[ \left( S_{\mathrm {e2e}}^n \otimes S_{1}\right) - A_2\right] ^+\\ \overset{(\text {IH})}{=}&\left[ \left( \left[ \left( \left[ \left( \left[ S_{n+1}-A_{n+2}\right] ^+ \otimes S_{n}\right) -A_{n+1}\right] ^+\otimes \cdots \otimes S_{2}\right) -A_{3}\right] ^+ \otimes S_{1}\right) - A_2\right] ^+. \end{aligned}$$

For the delay bound, it follows that

This finishes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolaus, P., Schmitt, J. (2020). On the Stochastic End-to-End Delay Analysis in Sink Trees Under Independent and Dependent Arrivals. In: Hermanns, H. (eds) Measurement, Modelling and Evaluation of Computing Systems. MMB 2020. Lecture Notes in Computer Science(), vol 12040. Springer, Cham. https://doi.org/10.1007/978-3-030-43024-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43024-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43023-8

  • Online ISBN: 978-3-030-43024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics