Skip to main content

Convolutional Neural Networks for 3D Protein Classification

  • Chapter
  • First Online:
Book cover Deep Learners and Deep Learner Descriptors for Medical Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 186))

  • 462 Accesses

Abstract

The main goal of this chapter is to develop a system for automatic protein classification. Proteins are classified using CNNs trained on ImageNet, which are tuned using a set of multiview 2D images of 3D protein structures generated by Jmol, which is a 3D molecular graphics program. Jmol generates different types of protein visualizations that emphasize specific properties of a protein’s structure, such as a visualization that displays the backbone structure of the protein as a trace of the Cα atom. Different multiview protein visualizations are generated by uniformly rotating the protein structure around its central X, Y, and Z viewing axes to produce 125 images for each protein. This set of images is then used to fine-tune the pretrained CNNs. The proposed system is tested on two datasets with excellent results. The MATLAB code used in this chapter is available at https://github.com/LorisNanni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marti-Renom, M., Capriotti, E., Shindyalov, I., Bourne, P.: Structure comparison and alignment. In: Gu, J., Bourne, P.E. (eds.) Structural Bioinformatics, pp. 397–418. Wiley-Blackwell, Hoboken, NJ (2009)

    Google Scholar 

  2. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  3. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

    Article  Google Scholar 

  4. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl 2), ii246-ii255 (2003)

    Google Scholar 

  5. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  MathSciNet  Google Scholar 

  6. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)

    Article  Google Scholar 

  7. Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. The EMBO J. 5(4), 823–826 (1986)

    Article  Google Scholar 

  8. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33(7), 2302–2309 (2005)

    Article  Google Scholar 

  9. Prlic, A., et al.: Precalculated protein structure alignments at the RCSB PDB website. Bioinformatics 26, 2983–2985 (2010)

    Article  Google Scholar 

  10. Røgen, P.: Evaluating protein structure descriptors and tuning Gauss integral based descriptors. J. Phys. Condens. Matter 17, 1523–1538 (2005)

    Article  Google Scholar 

  11. Zhou, X., Chou, J., Wong, S.T.C.: Protein structure similarity from principle component correlation analysis. BMC Bioinform. 7(40) (2006)

    Google Scholar 

  12. Konagurthu, A.S., Stuckey, P.J., Lesk, A.M.: Structural search and retrieval using a tableau representation of protein folding patterns. Bioinformatics 24(5), 645–651 (2008)

    Article  Google Scholar 

  13. Sael, L., et al.: Fast protein tertiary structure retrieval based on global surface shape similarity. Proteins 72, 1259–1273 (2008)

    Article  Google Scholar 

  14. Stivala, A., Wirth, A., Stuckey, P.J.: Tableau-based protein substructure search using quadratic programming. BMC Bioinform. 10(1), 153 (2009)

    Article  Google Scholar 

  15. Harder, T., Borg, M., Boomsma, W., Røgen, P., Hamelryck, T.: Fast large-scale clustering of protein structures using Gauss integrals. Bioinformatics, 510–515 (2012)

    Google Scholar 

  16. Mirceva, G., Cingovska, I., Dimov, Z., Davcev, D.: Efficient approaches for retrieving protein tertiary structures. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1166–1179 (2012)

    Article  Google Scholar 

  17. Suryanto, C.H., Jiang, S., Fukui, K.: Protein structure similarity based on multi-view images generated from 3D molecular visualization. In: Presented at the 21st International Conference on Pattern Recognition (2012)

    Google Scholar 

  18. Suryanto, C.H., Saigo, H., Fukui, K.: Structural class classification of 3d protein structure based on multi-view 2d images. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(1), 286–299 (2015)

    Article  Google Scholar 

  19. Bottomley, S., Helmerhorst, E.: Molecular visualization. In: Structural Bioinformatics, 2nd edn., pp. 237–268. Wiley-Blackwell, Hoboken, NJ (2009)

    Google Scholar 

  20. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distribution. Pattern Recogn. Lett. 29(1), 51–59 (1996)

    Article  Google Scholar 

  21. Maeda, K.: From the subspace methods to the mutual subspace method. In: Computer Vision. Studies in Computational Intelligence, vol. 285, pp. 135–156. Springer, Berlin and Heidelberg (2010)

    Google Scholar 

  22. Fukui, K., Stenger, B., Yamaguchi, O.: A framework for 3d object recognition using the kernel constrained mutual subspace method. In: Computer Vision—ACCV 2006. Lecture Notes in Computer Science, no. 3852, pp. 315–332. Springer, Berlin and Heidelberg (2006)

    Google Scholar 

  23. Fukui, K., Yamaguchi, O.: The kernel orthogonal mutual subspace method and its application to 3d object recognition. In: Computer Vision—ACCV 2007. Lecture Notes in Computer Science, vol. 4844, pp. 467–476. Springer, Berlin and Heidelberg (2007)

    Google Scholar 

  24. Kim, T., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1005–1018 (2007)

    Article  Google Scholar 

  25. Fukui, K., Yamaguchi, O.: Face recognition using multiviewpoint patterns for robot vision. In: Presented at the 11th International Symposium of Robotics Research (2003)

    Google Scholar 

  26. Fukui, K., Maki, A.: Difference subspace and its generalization for subspace-based methods. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2164–2177 (2015)

    Article  Google Scholar 

  27. Ohkawa, Y., Fukui, K.: Hand-shape recognition using the distributions of multi-viewpoint image sets. IEICE Trans. Inf. Syst. E95-D(6), 1619–1627 (2012)

    Google Scholar 

  28. Russakovsky, O., Deng, J., Su, H.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc., Red Hook, NY (2012)

    Google Scholar 

  30. Szegedy, C., et al.: Going deeper with convolutions. In: Presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  31. O'Donoghue, S.I., et al.: Visualization of macromolecular structures. Nat. Methods 7(3 Suppl), S42–S55 (2010)

    Article  MathSciNet  Google Scholar 

  32. Hanson, R.M.: Jmol—A paradigm shift in crystallographic vi-sualization. J. Appl. Crystallogr. 45(5), 1250–1260 (2010)

    Article  Google Scholar 

  33. Gua, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  34. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? Cornell University (2014). arXiv:1411.1792

    Google Scholar 

  35. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted versus non-handcrafted features for computer vision classification. Pattern Recogn. 71, 158–172 (2017)

    Article  Google Scholar 

  36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceeding IEEE 86(11), 2278–2323 (1998)

    Article  Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Cornell University (2014). arXiv:1409.1556v6

    Google Scholar 

  38. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV (2016)

    Google Scholar 

  39. Guo, J., Lin, Y., Sun, Z.: A novel method for protein subcellular localization: Combining residue-couple model and SVM. In: Presented at the Proceedings of 3rd Asia-Pacific Bioinformatics Conference, Singapore (2005)

    Google Scholar 

  40. Nanni, L., Lumini, A.: An ensemble of K-Local Hyperplane for predicting Protein-Protein interactions. Bioinformatics 22(10), 1207–1210 (2006)

    Article  Google Scholar 

  41. Nanni, L., Brahnam, S., Lumini, A.: High performance set of PseAAC descriptors extracted from the amino acid sequence for protein classification. J. Theor. Biol. 266(1), 1–10 (2010)

    Article  MATH  Google Scholar 

  42. Zeng, Y.H., Guo, Y.Z., Xiao, R.Q., Yang, L., Yu, L.Z., Li, M.L.: Using the augmented Chou's pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach. J. Theor. Biol. 259(2), 366–372 (2009)

    Article  MATH  Google Scholar 

  43. Chou, K.-C.: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics 6, 262–274 (2009)

    Article  Google Scholar 

  44. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. In: Presented at the Proceedings of the National Academy of Sciences (PNAS) (1987)

    Google Scholar 

  45. Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  46. Chen, J., et al.: WLD: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)

    Article  Google Scholar 

  47. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nosaka, R., Fukui, K.: HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recogn. Bioinform. 47(7), 2428–2436 (2014)

    Article  Google Scholar 

  49. Strandmark, P., Ulén, J., Kahl, F.: HEp-2 staining pattern classification. In: Presented at the International Conference on Pattern Recognition (ICPR2012) (2012). https://lup.lub.lu.se/search/ws/files/5709945/3437301.pdf

  50. San Biagio, M., Crocco, M., Cristani, M., Martelli, S., Murino, V.: Heterogeneous auto-similarities of characteristics (hasc): exploiting relational information for classification. In: Presented at the IEEE Computer Vision (ICCV13), Sydneys, Australia (2013)

    Google Scholar 

  51. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247(4), 536–540 (1995)

    Google Scholar 

  52. Fox, N.K., Brenner, S.E., Chandonia, J.-M.: SCOPe: Structural classification of proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acid Res. 42(Database), D304–09 (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program. We used a donated TitanX GPU to train CNNs used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loris Nanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nanni, L., Pasquali, F., Brahnam, S., Lumini, A., Axenopoulos, A. (2020). Convolutional Neural Networks for 3D Protein Classification. In: Nanni, L., Brahnam, S., Brattin, R., Ghidoni, S., Jain, L. (eds) Deep Learners and Deep Learner Descriptors for Medical Applications. Intelligent Systems Reference Library, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-030-42750-4_9

Download citation

Publish with us

Policies and ethics