Skip to main content

From Artificial Intelligence to Deep Learning in Bio-medical Applications

  • Chapter
  • First Online:
Deep Learners and Deep Learner Descriptors for Medical Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 186))

Abstract

Since their introduction in late 80s, convolutional neural networks and auto-encoder architectures have shown to be powerful for automatic feature extraction and information simplification. Using convolution kernels from image processing in 2D and 3D spaces for the stage by stage features retrieval processes, allows the architecture to be as flexible as the designer wants, considering that this is not a lucky fact. With the recent ten years of technological progress now we can compute and train those architectures and they have faced so many challenges for applications originating the most famous CNN architectures. This chapter presents an author position related to the artificial intelligence field and machine learning/deep learning appearance in the scientific world scene describing hastily the basis for each one and later, focusing on medical applications most of the socialized on the Annual IEEE Engineering in Medicine and Biology Society conference held in Hawaii in July 2018. While addressing the medical applications from cardiovascular to cancer diagnosis, we will briefly describe the architectures and discuss some features. Finally, we will present a contribution to the deep learning by introducing a new architecture called Convolutional Laguerre-Gauss Network with a kernel based on a spiral phase function ranging from 0 to 2π and a toroidal amplitude band-pass filter, known as the Laguerre-Gauss transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Typical in transfer learning can be seen in http://www.image-net.org/.

  2. 2.

    However, CNNs with large receptive fields, such as very deep networks or networks with large convolution kernels, often suffer from overfitting due to large numbers of trainable parameters.

  3. 3.

    https://lmb.informatik.uni-freiburg.de/index.php.

  4. 4.

    From the Department of Nuclear Medicine, Seoul National University College of Medicine.

  5. 5.

    With 1000, and 200 neurons with hyper-tangent activation functions for two hidden layers, and a single output neuron with a sigmoid activation function.

  6. 6.

    Speech becomes hesitant and lacks grammatical accuracy.

  7. 7.

    Lose ability to understand or formulate words in a spoken sentence.

  8. 8.

    There is a direct relation on the physics for RTM and medical imaging check the work of Wang et al. 2016 in IEEE Transactions on Medical Imaging, vol. 35.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. CoRR (2016). arXiv:1603.04467

  2. Akputu, O., Seng, K., Lee, Y.: Affect recognition for web 2.0 intelligent e-tutoring systems: exploration of students’ emotional feedback, pp. 188–215 (2015)

    Google Scholar 

  3. Arnold, M.G.: Combining conscious and unconscious knowledge within human-machine-interfaces to foster sustainability with decision-making concerning production processes. J. Clean. Prod. 179, 581–592 (2018)

    Google Scholar 

  4. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: Multi-objective optimal power management and sizing of a reliable wind/pv microgrid with hydrogen energy storage using mopso. J. Intell. Fuzzy Syst. 32(3), 1753–1773 (2017)

    Google Scholar 

  5. Bates, R., Irving, B., Markelc, B., Kaeppler, J., Muschel, R., Grau, V., Schnabel, J.A.: Extracting 3d vascular structures from microscopy images using convolutional recurrent networks (2017)

    Google Scholar 

  6. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR (2013). arXiv:1312.6203

  7. Buccino, A.P., Ness, T.V., Einevoll, G.T., Cauwenberghs, G., Fyhn, M.: A deep learning approach for the classification of neuronal cell types, pp. 1–4 (2017)

    Google Scholar 

  8. Bustamante, P.A., Celani, N.M.L., Perez, M.E., Montoya, O.L.Q.: Recognition and regionalization of emotions in the arousal-valence plane. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2015, Novem, pp. 6042–6045. IEEE (2015)

    Google Scholar 

  9. Campo, D., Quintero, O.L., Bastidas, M.: Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech. J. Phys: Conf. Ser. 705, 012034 (2016)

    Google Scholar 

  10. Celani, N.L., Ponce, S., Quintero, O.L., Vargas-Bonilla, F.: Improving quality of life: home care for chronically ill and elderly people. In: Caregiving and Home Care. InTech (2018)

    Google Scholar 

  11. Chaparro, V., Gomez, A., Salgado, A., Quintero, O.L., Lopez, N., Villa, L.F.: Emotion recognition from EEG and facial expressions: a multimodal approach. In: IEEE Engineering in Medicine and Biology Society (EMBS) (2018)

    Google Scholar 

  12. Dart, R.J., Vantourout, P., Laing, A., Digby-Bell, J.L., Powell, N., Irving, P.M., Hayday, A.: Tu1811-colonic gamma delta T cells respond innately to Nkg2D ligands and are grossly dysregulated in active inflammatory bowel disease. Gastroenterology 154(6), S-1026 (2018)

    Google Scholar 

  13. Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J.S., Assaf, M., Balsters, J.H., Baxter, L., Beggiato, A., Bernaerts, S., et al.: Enhancing studies of the connectome in autism using the autism brain imaging data exchange ii. Scientific data 4, 170010 (2017)

    Google Scholar 

  14. Ekman, P., Friesen, W.V.: Measuring facial movement. Environ. Psychol. Nonverbal Behav. 1(1), 56–75 (1976)

    Google Scholar 

  15. Gallego-Posada, J.D., Montoya-Zapata, D.A., Quintero-Montoya, O.L., Montoya-Zapa, D.A.: Detection and diagnosis of breast tumors using deep convolutional neural networks. In: Conference Proceedings of XVII Latin American Conference in Automatic Control, p. 17 (2016)

    Google Scholar 

  16. Gómez, A., Quintero, L., López, N., Castro, J.: An approach to emotion recognition in single-channel EEG signals: a mother child interaction. J. Phys. Conf. Ser. 705(1), 012051 (2016)

    Google Scholar 

  17. Gómez, A., Quintero, L., López, N., Castro, J., Villa, L., Mejía, G.: Emotion recognition in single-channel EEG signals using stationary wavelet transform. In: IFMBE Proceedings, Claib (2016)

    Google Scholar 

  18. Gómez, A., Quintero, L., López, N., Castro, J., Villa, L., Mejía, G.: An approach to emotion recognition in single-channel EEG signals using stationary wavelet transform. In: IFMBE Proceedings, Claib, pp. 654–657 (2017)

    Google Scholar 

  19. Gou, Y., Han, Y., Xu, J.: Radial Hilbert transform with Laguerre-Gaussian spatial filters. Opt. Lett. 31, 1394–1396 (2006)

    Google Scholar 

  20. Han, Y., Yoo, J., Kim, H.H., Shin, H.J., Sung, K., Ye, J.C.: Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn. Reson. Med. 80(3), 1189–1205 (2018)

    Google Scholar 

  21. Hurtado Moreno, L., Quintero, O.L., García Rendón, J.: Estimating the spot market price bid in colombian electricity market by using artificial intelligence. Rev. Metod. Cuantitativos Para Econ. Empres. 18(1) (2014)

    Google Scholar 

  22. Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L.: Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532(7600), 453 (2016)

    Google Scholar 

  23. Hwang, D., Kim, K.Y., Kang, S.K., Seo, S., Paeng, J.C., Lee, D.S., Lee, J.S.: Improving accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. (2018)

    Google Scholar 

  24. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Google Scholar 

  25. Karaboga, D., Kaya, E.: Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev. (2018)

    Google Scholar 

  26. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G., Hamarneh, G.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146(October), 1038–1049 (2017)

    Google Scholar 

  27. Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.: 3d convolutional neural networks for classification of functional connectomes (2018). arXiv:1806.04209

  28. Kreps, G.L., Neuhauser, L.: Artificial intelligence and immediacy: designing health communication to personally engage consumers and providers. Patient Educ. Couns. 92(2), 205–210 (2013)

    Google Scholar 

  29. Leseconomistesaterres: Changer davenir reinventing travail et le modele economique, p. 24 (2017)

    Google Scholar 

  30. Lessmann, N., van Ginneken, B., Zreik, M., de Jong, P.A., de Vos, B.D., Viergever, M.A., Išgum, I.: Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. Comput. Vis. Pattern Recognit. 37(2), 615–625 (2017)

    Google Scholar 

  31. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. Math. 16(2), 146–160 (1976)

    MathSciNet  MATH  Google Scholar 

  32. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE (2010)

    Google Scholar 

  33. Lyu, J., Ling, S.H., Member, S.: Using Multi-level Convolutional Neural Network for Classification of Lung Nodules on CT Images, pp. 686–689 (2018)

    Google Scholar 

  34. Masood, Z., Majeed, K., Samar, R., Raja, M.A.Z.: Design of Mexican hat wavelet neural networks for solving Bratu type nonlinear systems. Neurocomputing 221, 1–14 (2017)

    Google Scholar 

  35. Mejia, G., Campo, D., Quintero, L.: Sistema de Inferencia Basado en Lógica Difusa para la Identificación de Felicidad y Tristeza en Señales de Audio. (October), 0–4 (2014)

    Google Scholar 

  36. Montoya, O.L.Q., Villa, L.F., Mun˜oz, S., Arenas, A.C.R., Bastidas, M.: Information retrieval on documents methodology based on entropy filtering methodologies. Int. J. Bus. Intell. Data Min. 10(3), 280–296 (2015)

    Google Scholar 

  37. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Google Scholar 

  38. Nanni, L., Ghidoni, S., Brahnam, S.: Ensemble of convolutional neural networks for bioimage classification. Appl. Comput. Inform. (2018)

    Google Scholar 

  39. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook, S.A., de Marvao, A., Dawes, T., O‘Regan, D.P., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Google Scholar 

  40. Paniagua, J., Quintero, O.: Attenuation of reverse time migration artifacts using Laguerre-Gauss filtering. In: 79th EAGE Conference and Exhibition 2017, Paris. EAGE (2017)

    Google Scholar 

  41. Paniagua, J.G., Quintero, O.L.: The use of Laguerre-Gauss transform in 2D reverse time migration imaging. In: 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 31 July–3 August 2017, pp. 1284–1289. Brazilian Geophysical Society (2017)

    Google Scholar 

  42. Paniagua, J.G., Sierra-Sosa, D.: Laguerre Gaussian filters in reverse time migration image reconstruction. VII Simpósio Brasileiro de Geofísica VII, 6 (2016)

    Google Scholar 

  43. Pessoa, L.: On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9(2), 148–158 (2008)

    Google Scholar 

  44. Quintero, O.L., Jaramillo P.F., Bastidas, M.: Modeling perspective for the relevant market of voice services: mobile to mobile. Maskana 6(2), 187–201 (2015)

    Google Scholar 

  45. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun, M., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1(1), 18 (2018)

    Google Scholar 

  46. Rakhshandehroo, G., Akbari, H., Afshari Igder, M., Ostadzadeh, E.: Long-term groundwater-level forecasting in shallow and deep wells using wavelet neural networks trained by an improved harmony search algorithm. J. Hydrol. Eng. 23(2), 04017058 (2017)

    Google Scholar 

  47. Restrepo, D., Gomez, A.: Short research advanced project: development of strategies for automatic facial feature extraction and emotion recognition. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE (2017)

    Google Scholar 

  48. Rincon-Montoya, S., Gonzales-Restrepo, C., Sierra-sosa, D., Restrepo-Gómez, R., Quintero, L.: Evaluation and development of strategies for facial features extraction for emotion detection by software. (December), 1–7 (2015)

    Google Scholar 

  49. Ríos-Sánchez, B., Arriaga-Gómez, M.F., Guerra-Casanova, J., de Santos-Sierra, D., de Mendizábal-Vázquez, I., Bailador, G., Sánchez-Ávila, C.: gb2sµMOD: a MUltiMODal biometric video database using visible and IR light. Inf. Fusion 32, 64–79 (2016)

    Google Scholar 

  50. Rissanen, J.: Minimum Description Length Principle. Springer (2010)

    Google Scholar 

  51. Rocha, D., Sava, P., Guitton, A.: 3d acoustic least-squares reverse time migration using the energy norm. Geophysics 83(3), S261–S270 (2018)

    Google Scholar 

  52. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, pp. 1–8 (2015)

    Google Scholar 

  53. Rudovic, O., Lee, J., Dai, M., Schuller, B., Picard, R.: Personalized machine learning for robot perception of affect and engagement in autism therapy (2018). arXiv:1802.01186

  54. Rus, S., Joshi, D., Braun, A., Kuijper, A.: The emotive couch-learning emotions by capacitively sensed. Procedia Comput. Sci. 130, 263–270 (2018)

    Google Scholar 

  55. Santiago, R.C., Manuela, B.O., Quintero, M., Lucía, O.: Order dependent one-vs-all tree based binary classification scheme for multiclass automatic speech emotion recognition. (October 2014), 1486–1490 (2014)

    Google Scholar 

  56. Schlemper, J., Oktay, O., Rueckert, D.: Deep learning for image reconstruction and super-resolution: applications in cardiac MR imaging, p. 7 (2018)

    Google Scholar 

  57. Schlemper, J., Yang, G., Ferreira, P., Scott, A., McGill, L.-A., Khalique, Z., Gorodezky, M., Roehl, M., Keegan, J., Pennell, D., et al.: Stochastic deep compressive sensing for the reconstruction of diffusion tensor cardiac MRI (2018). arXiv:1805.12064

  58. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  59. Schutter, D.J., van Honk, J.: Extending the global workspace theory to emotion: phenomenality without access. Conscious. Cogn. 13(3), 539–549 (2004)

    Google Scholar 

  60. Scott, A.D., Nielles-Vallespin, S., Ferreira, P.F., Khalique, Z., Gatehouse, P.D., Kilner, P., Pennell, D.J., Firmin, D.N.: An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3 T diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. J. Cardiovasc. Magn. Reson. 20(1), 1 (2018)

    Google Scholar 

  61. Sierra-Sosa, D., Bastidas, M., Ortiz P., D., Quintero, O.: Double fourier analysis for emotion identification in voiced speech. J. Phys. Conf. Ser. 705(October 2015), 012035 (2016)

    Google Scholar 

  62. Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012)

    Google Scholar 

  63. Suckling, J., et al.: The mini-MIAS database of mammograms. In: Society TMIA (ed.) Digital Mammography Database ver, 1 (2015)

    Google Scholar 

  64. Team, N.L.S.T.R.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011)

    Google Scholar 

  65. Tsuchiya, N., Adolphs, R.: Emotion and consciousness. Trends Cogn. Sci. 11(4), 158–167 (2007)

    Google Scholar 

  66. Uribe, A., Gomez, A., Bastidas, M., Quintero, O.L., Campo, D.: A novel emotion recognition technique from voiced-speech. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), pp. 1–4. IEEE (2017)

    Google Scholar 

  67. Vásquez-Correa, J.C., Arias-Vergara, T., Orozco-Arroyave, J.R., Vargas-Bonilla, J., Arias-Londoño, J.D., Nöth, E.: Automatic detection of Parkinson’s disease from continuous speech recorded in non-controlled noise conditions. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  68. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

    Google Scholar 

  69. Wang, Z., Ding, H., Lu, G., Bi, X.: Reverse-time migration based optical imaging. IEEE Trans. Med. Imaging 35(1), 273–281 (2016)

    Google Scholar 

  70. Wu, Y., Yang, F., Liu, Y., Zha, X., Yuan, S.: A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification, pp. 324–327 (2018)

    Google Scholar 

  71. Zadeh, L.A.: From search engines to question-answering systems the need for new tools. In: The 12th IEEE International Conference on Fuzzy Systems, FUZZ’03, vol. 2, pp. 1107–1109 (2003)

    Google Scholar 

  72. Zreik, M., Lessmann, N., van Hamersvelt, R.W., Wolterink, J.M., Voskuil, M., Viergever, M.A., Leiner, T., Išgum, I.: Deep learning analysis of the myocardium in coronary ct angiography for identification of patients with functionally significant coronary artery stenosis. Med. Image Anal. 44, 72–85 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Lucia Quintero Montoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montoya, O.L.Q., Paniagua, J.G. (2020). From Artificial Intelligence to Deep Learning in Bio-medical Applications. In: Nanni, L., Brahnam, S., Brattin, R., Ghidoni, S., Jain, L. (eds) Deep Learners and Deep Learner Descriptors for Medical Applications. Intelligent Systems Reference Library, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-030-42750-4_10

Download citation

Publish with us

Policies and ethics