Skip to main content

Conditions for Selecting Drying Techniques in Developing Countries

  • Chapter
  • First Online:
Sustainable Food Drying Techniques in Developing Countries: Prospects and Challenges

Abstract

The modern practice of drying focuses on retaining the structural and bioactive functionality of foods. In order to produce high quality dried food, it is essential to understand the properties of food that appeal to general consumers. An ideal drying process should be able to maintain quality attributes such as texture, taste, aroma, nutrients, and color. However, these drying systems are expensive, and their operating and maintenance costs are also high. Therefore, a balance between the quality of dried food and the cost of the drying systems is desirable. Developing countries with limited resources cannot afford sumptuous drying technology. As such, selected sustainable drying techniques should not only be economical but also be able to preserve the expected quality. The main purpose of this chapter is to give an overview of the quality aspects of drying, along with the required energy and time to retain these features. Additionally, a method of selecting drying techniques for developing countries, taking the cost and safety factor into consideration, has been discussed extensively at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Masud, M.U.H. Joardder, M.T. Islam, M.M. Hasan, M.M. Ahmed, Feasibility of utilizing waste heat in drying of plant-based food materials, in International Conference on Mechanical, Industrial and Materials Engineering, RUET, Rajshahi, Bangladesh, 500 (2017)

    Google Scholar 

  2. T. Koyuncu, Y. Pinar, F. Lule, Convective drying characteristics of azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits. J. Food Eng. 78(4), 1471–1475 (2007)

    Article  Google Scholar 

  3. M.A. Karim, M.N.A. Hawlader, Drying characteristics of banana: Theoretical modelling and experimental validation. J. Food Eng. 70(1), 35–45 (2005)

    Article  Google Scholar 

  4. M.A. Karim, M.N.A. Hawlader, Mathematical modelling and experimental investigation of tropical fruits drying. Int. J. Heat Mass Transf. 48(23), 4914–4925 (2005)

    Article  CAS  Google Scholar 

  5. M.U.H. Joardder, M.H. Masud, S. Nasif, J.A. Plabon, S.H. Chaklader, Development and performance test of an innovative solar derived intermittent microwave convective food dryer, in AIP Conference Proceedings, 2121(1), 40010–40013 (2019)

    Google Scholar 

  6. M.U.H. Joardder, M. Mourshed, M.H. Masud, Characteristics of bound water, in State of Bound Water: Measurement and Significance in Food Processing, ed. Springer International Publishing, Cham, 29–45 (2019)

    Google Scholar 

  7. J.C. Ho, S.K. Chou, K.J. Chua, A.S. Mujumdar, M.N.A. Hawlader, Analytical study of cyclic temperature drying: Effect on drying kinetics and product quality. J. Food Eng. 51(1), 65–75 (2002)

    Article  Google Scholar 

  8. E. J. Quirijns, Modelling and Dynamic Optimisation of Quality Indicator Profiles during Drying, Wageningen University (2006)

    Google Scholar 

  9. M.U. Joardder, M.H. Masud, M.H. Azharul, Relationship between intermittency of drying, microstructural changes, and food quality. Intermittent and nonstationary drying technologies: Principles and applications, 123 (2017)

    Google Scholar 

  10. S.J. Kowalski, A. Pawłowski, Energy consumption and quality aspect by intermittent drying. Chem. Eng. Process. Process Intensif. 50(4), 384–390 (2011)

    Article  CAS  Google Scholar 

  11. M.U.H. Joardder, M.H. Masud, Effectiveness of food preservation systems, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 127–152 (2019)

    Google Scholar 

  12. N. Duc Pham et al., Quality of plant-based food materials and its prediction during intermittent drying. Crit. Rev. Food Sci. Nutr. 59(8), 1197–1211 (2019)

    Article  PubMed  CAS  Google Scholar 

  13. M.S. Rahman, O.J. McCarthy, A classification of food properties. Int. J. Food Prop. 2(2), 93–99 (1999)

    Article  Google Scholar 

  14. M.U.H. Joardder, M.H. Masud, A brief history of food preservation, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 57–66 (2019)

    Google Scholar 

  15. M.M. Rahman, M.U.H. Joardder, A. Karim, Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 169, 126–138 (2018)

    Article  Google Scholar 

  16. M.M. Rahman, Y.T. Gu, M.A. Karim, Development of realistic food microstructure considering the structural heterogeneity of cells and intercellular space. Food Struct. 15, 9–16 (2018)

    Article  Google Scholar 

  17. M.U.H. Joardder, C. Kumar, M.A. Karim, Food structure: Its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 57(6), 1190–1205 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. A.K. Datta, Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J. Food Eng. 80(1), 80–95 (2007)

    Article  Google Scholar 

  19. A.K. Datta, Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. J. Food Eng. 80(1), 96–110 (2007)

    Article  Google Scholar 

  20. J. Srikiatden, J.S. Roberts, Moisture transfer in solid food materials: A review of mechanisms, models, and measurements. Int. J. Food Prop. 10(4), 739–777 (2007)

    Article  CAS  Google Scholar 

  21. M.U.H. Joardder, M. Mourshed, M.H. Masud, Challenges in bound water measurement, in State of Bound Water: Measurement and Significance in Food Processing, ed., Springer International Publishing, Cham, 83–92 (2019)

    Google Scholar 

  22. A. Halder, A.K. Datta, R.M. Spanswick, Water transport in cellular tissues during thermal processing. AICHE J. 57(9), 2574–2588 (2011)

    Article  CAS  Google Scholar 

  23. S.W. Fanta et al., Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration. J. Food Eng. 124, 86–96 (2014)

    Article  CAS  Google Scholar 

  24. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)

    Article  CAS  Google Scholar 

  25. M.U.H. Joardder, A. Karim, C. Kumar, Effect of temperature distribution on predicting quality of microwave dehydrated food. J. Mech. Eng. Sci. 5, 562–568 (2013)

    Article  Google Scholar 

  26. M.U.H. Joardder, M.H. Masud, Challenges and mistakes in food preservation, in Food Preservation in Developing Countries: Challenges and Solutions, ed., Springer International Publishing, Cham, 175–198 (2019)

    Google Scholar 

  27. M. Karel, D.B. Lund, Physical Principles of Food Preservation: Revised and Expanded, 129, CRC Press (2003)

    Google Scholar 

  28. F. Kong, R.P. Singh, Chemical deterioration and physical instability of foods and beverages, in The Stability and Shelf Life of Food, Second edn., Elsevier, 43–76 (2016)

    Google Scholar 

  29. S.H. Anwar, B. Kunz, The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 105(2), 367–378 (2011)

    Article  CAS  Google Scholar 

  30. M.A.M. Khraisheh, Y.S. Al-degs, W.A.M. Mcminn, Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 99(2), 177–184 (2004)

    Article  CAS  Google Scholar 

  31. A.N.A.M.I.B. Ayrosa, R.N.D.E.M. Pitombo, Influence of plate temperature and mode of rehydration on textural parameters of precooked freeze-dried beef. J. Food Process. Preserv. 27(3), 173–180 (2003)

    Article  Google Scholar 

  32. M.S. Rahman, Food stability beyond water activity and glass transition: Macro-micro region concept in the state diagram. Int. J. Food Prop. 12(4), 726–740 (2009)

    Article  CAS  Google Scholar 

  33. M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Determination of effective moisture diffusivity of banana using thermogravimetric analysis. Procedia Eng. 90, 538–543 (2014)

    Article  Google Scholar 

  34. M. U. H. Joardder, A. Karim, C. Kumar, R. J. Brown, Porosity: Establishing the Relationship between Drying Parameters and Dried Food Quality, Springer (2015)

    Google Scholar 

  35. P.C. Moyano, E. Troncoso, F. Pedreschi, Modeling texture kinetics during thermal processing of potato products. J. Food Sci. 72(2), E102–E107 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. N. Wang, J.G. Brennan, Changes in structure, density and porosity of potato during dehydration. J. Food Eng. 24(1), 61–76 (1995)

    Article  CAS  Google Scholar 

  37. C. Wilkinson, G.B. Dijksterhuis, M. Minekus, From food structure to texture. Trends Food Sci. Technol. 11(12), 442–450 (2000)

    Article  CAS  Google Scholar 

  38. H. Schubert, Food particle technology. Part I: Properties of particles and particulate food systems. J. Food Eng. 6(1), 1–32 (1987)

    Article  Google Scholar 

  39. J. Blahovec, Role of water content in food and product texture. Int. Agrophysics 21(3), 209 (2007)

    CAS  Google Scholar 

  40. G. Roudaut, C. Dacremont, B.V. Pàmies, B. Colas, M. Le Meste, Crispness: A critical review on sensory and material science approaches. Trends Food Sci. Technol. 13(6–7), 217–227 (2002)

    Article  CAS  Google Scholar 

  41. P.P. Lewicki, Some remarks on rehydration of dried foods. J. Food Eng. 36(1), 81–87 (1998)

    Article  Google Scholar 

  42. P.P. Lewicki, E. Duszczyk, Color change of selected vegetables during convective air drying. Int. J. Food Prop. 1(3), 263–273 (1998)

    Article  Google Scholar 

  43. O. Boeh-Ocansey, Effects of vacuum and atmospheric freeze-drying on quality of shrimp, turkey flesh and carrot samples. J. Food Sci. 49(6), 1457–1461 (1984)

    Article  Google Scholar 

  44. K.J. Chua, A.S. Mujumdar, S.K. Chou, M.N.A. Hawlader, J.C. Ho, Convective drying of banana, guava and potato pieces: Effect of cyclical variations of air temperature on drying kinetics and color change. Dry. Technol. 18(4–5), 907–936 (2000)

    Article  CAS  Google Scholar 

  45. A. Maskan, S. Kaya, M. Maskan, Effect of concentration and drying processes on color change of grape juice and leather (pestil). J. Food Eng. 54(1), 75–80 (2002)

    Article  Google Scholar 

  46. V.P. Oikonomopoulou, M.K. Krokida, Novel aspects of formation of food structure during drying. Dry. Technol. 31(9), 990–1007 (2013)

    Article  Google Scholar 

  47. A. Reyes, P.I. Alvarez, F.H. Marquardt, Drying of carrots in a fluidized bed. I. Effects of drying conditions and modelling. Dry. Technol. 20(7), 1463–1483 (2002)

    Article  Google Scholar 

  48. S. Grabowski, M. Marcotte, M. Poirier, T. Kudra, Drying characteristics of osmotically pretreated cranberries—Energy and quality aspects. Dry. Technol. 20(10), 1989–2004 (2002)

    Article  Google Scholar 

  49. C.F. Hansmann, E. Joubert, T.J. Britz, Dehydration of peaches without sulphur dioxide. Dry. Technol. 16(1–2), 101–121 (1998)

    Article  CAS  Google Scholar 

  50. M. Mahiuddin, M.I.H. Khan, C. Kumar, M.M. Rahman, M.A. Karim, Shrinkage of food materials during drying: Current status and challenges. Compr. Rev. Food Sci. Food Saf. 17(5), 1113–1126 (2018)

    Article  PubMed  Google Scholar 

  51. C. Druaux, A. Voilley, Effect of food composition and microstructure on volatile flavour release. Trends Food Sci. Technol. 8(11), 364–368 (1997)

    Article  CAS  Google Scholar 

  52. C. Lafarge, M. Bard, A. Breuvart, J. Doublier, N. Cayot, Influence of the structure of cornstarch dispersions on kinetics of aroma release. J. Food Sci. 73(2), S104–S109 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. R.K. Singh, D.B. Lund, Kinetics of ascorbic acid degradation in stored intermediate moisture apples, in Proceedings of the 3rd International Congress on Engineering and Food. Engineering Sciences in the Food Industry, vol. 1, (1984)

    Google Scholar 

  54. M.C. Vieira, A.A. Teixeira, C.L.M. Silva, Kinetic parameters estimation for ascorbic acid degradation in fruit nectar using the partial equivalent isothermal exposures (PEIE) method under non-isothermal continuous heating conditions. Biotechnol. Prog. 17(1), 175–181 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. S. Palzer, Food structures for nutrition, health and wellness. Trends Food Sci. Technol. 20(5), 194–200 (2009)

    Article  CAS  Google Scholar 

  56. R. Sharma, Food structures and delivery of nutrients. Food Mater. Sci. Eng., 204–221 (2012)

    Google Scholar 

  57. J. Parada, J.M. Aguilera, Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 72(2) (2007)

    Google Scholar 

  58. I. Sensoy, A review on the relationship between food structure, processing, and bioavailability. Crit. Rev. Food Sci. Nutr. 54(7), 902–909 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. K.W. Waldron, M.L. Parker, A.C. Smith, Plant cell walls and food quality. Compr. Rev. Food Sci. Food Saf. 2(4), 128–146 (2003)

    Article  PubMed  Google Scholar 

  60. S.S. Sablani, Drying of fruits and vegetables: Retention of nutritional/functional quality. Dry. Technol. 24(2), 123–135 (2006)

    Article  Google Scholar 

  61. K. Franzen, R.K. Singh, M.R. Okos, Kinetics of nonenzymatic browning in dried skim milk. J. Food Eng. 11(3), 225–239 (1990)

    Article  Google Scholar 

  62. S. Ghnimi, S. Umer, A. Karim, A. Kamal-Eldin, Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 6, 1–10 (2017)

    Article  Google Scholar 

  63. S.K. Chou, K.J. Chua, New hybrid drying technologies for heat sensitive foodstuffs. Trends Food Sci. Technol. 12(10), 359–369 (2001)

    Article  Google Scholar 

  64. C. Kumar, M.U.H. Joardder, T.W. Farrell, G.J. Millar, M.A. Karim, Mathematical model for intermittent microwave convective drying of food materials. Dry. Technol. 34(8), 962–973 (2016)

    Article  Google Scholar 

  65. C. Kumar, M.A. Karim, M.U.H. Joardder, Intermittent drying of food products: A critical review. J. Food Eng. 121, 48–57 (2014)

    Article  Google Scholar 

  66. N.R. Nwakuba, S.N. Asoegwu, K.N. Nwaigwe, Energy requirements for drying of sliced agricultural products: A review. Agric. Eng. Int. CIGR J. 18(2), 144–155 (2016)

    Google Scholar 

  67. G.S.V. Raghavan, T.J. Rennie, P.S. Sunjka, V. Orsat, W. Phaphuangwittayakul, P. Terdtoon, Overview of new techniques for drying biological materials with emphasis on energy aspects. Brazilian J. Chem. Eng. 22(2), 195–201 (2005)

    Article  CAS  Google Scholar 

  68. M.A. Billiris, T.J. Siebenmorgen, A. Mauromoustakos, Estimating the theoretical energy required to dry rice. J. Food Eng. 107(2), 253–261 (2011)

    Article  Google Scholar 

  69. S. Gunasekaran, T.L. Thompson, Optimal energy management in grain drying. Crit. Rev. Food Sci. Nutr. 25(1), 1–48 (1986)

    Article  CAS  PubMed  Google Scholar 

  70. A.S. Mujumdar, A.S. Menon, Drying of solids: Principles, classification, and selection of dryers. Handb. Ind. Dry. 1, 1–39 (1995)

    Google Scholar 

  71. M.I.H. Khan, S.A. Nagy, M.A. Karim, Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Res. Int. 105, 772–781 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. M.I.H. Khan, T. Farrell, S.A. Nagy, M.A. Karim, Fundamental understanding of cellular water transport process in bio-food material during drying. Sci. Rep. 8(1), 15191 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. S.J. Kowalski, A. Pawłowski, Modeling of kinetics in stationary and intermittent drying. Dry. Technol. 28(8), 1023–1031 (2010)

    Article  Google Scholar 

  74. A. Motevali, S. Minaei, A. Banakar, B. Ghobadian, H. Darvishi, Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. J. Saudi Soc. Agric. Sci. 15(2), 179–187 (2016)

    Google Scholar 

  75. M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of Cell Wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)

    Article  Google Scholar 

  76. M.U.H. Joardder, M. Mourshed, M.H. Masud, Water in foods BT, in State of Bound Water: Measurement and Significance in Food Processing, ed. Springer International Publishing, Cham, 7–27 (2019)

    Google Scholar 

  77. W. Weisis, J. Buchinger, Solar drying: establishment of a production, sales and consulting infrastructure for solar thermal plants in Zimbabwe. Arbeitsgemeinschaft Erneuerbare Energie (AEE) of the Institute for Sustainable Technologies, Austria (2003)

    Google Scholar 

  78. M.R. Okos, Food dehydration, in Hand Book Food Engineering (1992)

    Google Scholar 

  79. U. Nations, World Economic and Social Survey 2013 Sustainable Development Challenges (2013)

    Book  Google Scholar 

  80. M.H. Masud, R. Ahamed, M. Mourshed, M.Y. Hossan, M.A. Hossain, Development and performance test of a low-cost hybrid solar air heater. Int. J. Ambient Energy 40(1) (2019)

    Google Scholar 

  81. M.A. Karim, M. Hawlader, Development of solar air collectors for drying applications. Energy Convers. Manag. 45(3), 329–344 (2004)

    Article  Google Scholar 

  82. M.A. Karim, M.N.A. Hawlader, Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31(4), 452–470 (2006)

    Article  CAS  Google Scholar 

  83. J. Desjardins, Infographic_ Visualizing How Much Countries Spend on R&D, 2018. [Online]. Available: https://www.visualcapitalist.com/money-country-puts-r-d/. Accessed: 08-Aug-2019

  84. I. Y. Naturefriends, Sustainable Development and its Challenges in Developing Countries, 2016. [Online]. Available: http://www.iynf.org/2018/08/a-guide-to-sustainable-development-and-its-challenges-in-developing-countries/. Accessed: 08-Aug-2019

  85. U. Nation, United Nations Framework Convention on Climate Change, What are the Technology Needs of Developing Countries? (2014)

    Google Scholar 

  86. N.N. Mustafi, M. Mourshed, M.H. Masud, M.S. Hossain, M.R. Kamal, Feasibility test on green energy harvesting from physical exercise devices, in AIP Conference Proceedings, 1851, (2017)

    Google Scholar 

  87. S.K. Ghosh, M. Mourshed, P.C. Karmaker, A. Ahmed, M.H. Masud, Performance enhancement of solar PV/T by using glycerin as an additive, in AIP Conference Proceedings, 2121(1), 130002-130005 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan Masud, M., Karim, A., Ananno, A.A., Ahmed, A. (2020). Conditions for Selecting Drying Techniques in Developing Countries. In: Sustainable Food Drying Techniques in Developing Countries: Prospects and Challenges. Springer, Cham. https://doi.org/10.1007/978-3-030-42476-3_2

Download citation

Publish with us

Policies and ethics