Skip to main content

Inflammation in CF: Key Characteristics and Therapeutic Discovery

  • Chapter
  • First Online:
Cystic Fibrosis

Part of the book series: Respiratory Medicine ((RM))

Abstract

Inflammation is a cardinal feature of CF lung pathophysiology with a wide range of contributing factors. In addition to chronic airway infection leading to pulmonary inflammation, mechanisms of imbalanced oxidative stress response and pro-inflammatory lipid homeostasis as well as exuberant cytokine responses all contribute to a dysregulated inflammatory milieu in the CF host. Previous studies of anti-inflammatory steroidal and nonsteroidal interventions in CF have proven clinical benefit, but intolerance, side effects, and challenges in proper dosing have hampered their widespread use. Widely adopted in CF clinical care, azithromycin confers anti-inflammatory benefits through a variety of putative mechanisms. Current preclinical and clinical research in this area seeks to leverage endogenous anti-inflammatory mechanisms, promoting resolution of inflammation in the CF host. CFTR modulator drugs and efforts to develop gene-based therapies agnostic to CFTR mutations are key advances in the current era of CF science and medicine. It is exciting to consider how these interventions may influence the inflammatory state within the CF airway, but a need for direct anti-inflammatory interventions appears likely to persist. This chapter reviews several key pathophysiologic mechanisms contributing to CF pulmonary inflammation, along with previous and existing therapeutic strategies to mitigate this host response without impairing host defense to infection or environmental insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziady AG, Hansen J. Redox balance in cystic fibrosis. Int J Biochem Cell Biol. 2014;52:113–23.

    Article  CAS  PubMed  Google Scholar 

  2. Wetmore DR, Joseloff E, Pilewski J, Lee DP, Lawton KA, Mitchell MW, et al. Metabolomic profiling reveals biochemical pathways and biomarkers associated with pathogenesis in cystic fibrosis cells. J Biol Chem. 2010;285(40):30516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985). 1993;75(6):2419–24.

    Article  CAS  Google Scholar 

  4. Chillappagari S, Venkatesan S, Garapati V, Mahavadi P, Munder A, Seubert A, et al. Impaired TLR4 and HIF expression in cystic fibrosis bronchial epithelial cells downregulates hemeoxygenase-1 and alters iron homeostasis in vitro. Am J Physiol Lung Cell Mol Physiol. 2014;307(10):L791–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid Redox Signal. 2005;7(1–2):80–91.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou H, Lu F, Latham C, Zander DS, Visner GA. Heme oxygenase-1 expression in human lungs with cystic fibrosis and cytoprotective effects against Pseudomonas aeruginosa in vitro. Am J Respir Crit Care Med. 2004;170(6):633–40.

    Article  PubMed  Google Scholar 

  7. Lee PJ, Alam J, Wiegand GW, Choi AM. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc Natl Acad Sci U S A. 1996;93(19):10393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D’Souza A, et al. Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator. J Immunol. 2013;190(10):5196–206.

    Article  CAS  PubMed  Google Scholar 

  9. Bajmoczi M, Gadjeva M, Alper SL, Pier GB, Golan DE. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am J Physiol Cell Physiol. 2009;297(2):C263–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boncoeur E, Criq VS, Bonvin E, Roque T, Henrion-Caude A, Gruenert DC, et al. Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: potential mechanism for excessive IL-8 expression. Int J Biochem Cell Biol. 2008;40(3):432–46.

    Article  CAS  PubMed  Google Scholar 

  11. Corti A, Franzini M, Cianchetti S, Bergamini G, Lorenzini E, Melotti P, et al. Contribution by polymorphonucleate granulocytes to elevated gamma-glutamyltransferase in cystic fibrosis sputum. PLoS One. 2012;7(4):e34772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hull J, Vervaart P, Grimwood K, Phelan P. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax. 1997;52(6):557–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dickerhof N, Pearson JF, Hoskin TS, Berry LJ, Turner R, Sly PD, et al. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic Biol Med. 2017;113:236–43.

    Article  CAS  PubMed  Google Scholar 

  14. Downey DG, Bell SC, Elborn JS. Neutrophils in cystic fibrosis. Thorax. 2009;64(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  15. Conese M, Copreni E, Di Gioia S, De Rinaldis P, Fumarulo R. Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cyst Fibros. 2003;2(3):129–35.

    Article  CAS  PubMed  Google Scholar 

  16. Tirouvanziam R, Gernez Y, Conrad CK, Moss RB, Schrijver I, Dunn CE, et al. Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc Natl Acad Sci U S A. 2008;105(11):4335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forrest OA, Ingersoll SA, Preininger MK, Laval J, Limoli DH, Brown MR, et al. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J Leukoc Biol. 2018;104(4):665–75.

    Article  CAS  PubMed  Google Scholar 

  18. Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman AL, Mocatta TJ, et al. Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med. 2004;170(12):1317–23.

    Article  PubMed  Google Scholar 

  19. Witko-Sarsat V, Allen RC, Paulais M, Nguyen AT, Bessou G, Lenoir G, et al. Disturbed myeloperoxidase-dependent activity of neutrophils in cystic fibrosis homozygotes and heterozygotes, and its correction by amiloride. J Immunol. 1996;157(6):2728–35.

    CAS  PubMed  Google Scholar 

  20. Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol. 2015;50 Suppl 40:S39–56.

    Article  PubMed  Google Scholar 

  21. Slomiany A, Murty VL, Aono M, Snyder CE, Herp A, Slomiany BL. Lipid composition of tracheobronchial secretions from normal individuals and patients with cystic fibrosis. Biochim Biophys Acta. 1982;710(1):106–11.

    Article  CAS  PubMed  Google Scholar 

  22. Kunzelmann K, Mehta A. CFTR: a hub for kinases and crosstalk of cAMP and Ca2+. FEBS J. 2013;280(18):4417–29.

    Article  CAS  PubMed  Google Scholar 

  23. Seegmiller AC. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci. 2014;15(9):16083–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Umunakwe OC, Seegmiller AC. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase. J Lipid Res. 2014;55(7):1489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Turkmani MR, Andersson C, Alturkmani R, Katrangi W, Cluette-Brown JE, Freedman SD, et al. A mechanism accounting for the low cellular level of linoleic acid in cystic fibrosis and its reversal by DHA. J Lipid Res. 2008;49(9):1946–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freedman SD, Katz MH, Parker EM, Laposata M, Urman MY, Alvarez JG. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(-/-) mice. Proc Natl Acad Sci U S A. 1999;96(24):13995–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaman MM, Martin CR, Andersson C, Bhutta AQ, Cluette-Brown JE, Laposata M, et al. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr-/- transgenic mice. Am J Physiol Lung Cell Mol Physiol. 2010;299(5):L599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Demarquoy J, Le Borgne F. Biosynthesis, metabolism, and function of protectins and resolvins. Clin Lipidol. 2014;9(6):683–93.

    Article  CAS  Google Scholar 

  30. Gu Z, Lamont GJ, Lamont RJ, Uriarte SM, Wang H, Scott DA. Resolvin D1, resolvin D2 and maresin 1 activate the GSK3beta anti-inflammatory axis in TLR4-engaged human monocytes. Innate Immun. 2016;22(3):186–95.

    Article  CAS  PubMed  Google Scholar 

  31. Campbell EL, Louis NA, Tomassetti SE, Canny GO, Arita M, Serhan CN, et al. Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB J. 2007;21(12):3162–70.

    Article  CAS  PubMed  Google Scholar 

  32. Eickmeier O, Fussbroich D, Mueller K, Serve F, Smaczny C, Zielen S, et al. Pro-resolving lipid mediator Resolvin D1 serves as a marker of lung disease in cystic fibrosis. PLoS One. 2017;12(2):e0171249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yang J, Eiserich JP, Cross CE, Morrissey BM, Hammock BD. Metabolomic profiling 1of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic Biol Med. 2012;53(1):160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Higgins G, Ringholz F, Buchanan P, McNally P, Urbach V. Physiological impact of abnormal lipoxin A(4) production on cystic fibrosis airway epithelium and therapeutic potential. Biomed Res Int. 2015;2015:781087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Huang YH, Wang HM, Cai ZY, Xu FY, Zhou XY. Lipoxin A4 inhibits NF-kappaB activation and cell cycle progression in RAW264.7 cells. Inflammation. 2014;37(4):1084–90.

    Article  CAS  PubMed  Google Scholar 

  36. Jozsef L, Zouki C, Petasis NA, Serhan CN, Filep JG. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci U S A. 2002;99(20):13266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bonnans C, Gras D, Chavis C, Mainprice B, Vachier I, Godard P, et al. Synthesis and anti-inflammatory effect of lipoxins in human airway epithelial cells. Biomed Pharmacother. 2007;61(5):261–7.

    Article  CAS  PubMed  Google Scholar 

  38. Weinberger B, Quizon C, Vetrano AM, Archer F, Laskin JD, Laskin DL. Mechanisms mediating reduced responsiveness of neonatal neutrophils to lipoxin A4. Pediatr Res. 2008;64(4):393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164(4):1663–7.

    Article  CAS  PubMed  Google Scholar 

  40. Karp CL, Flick LM, Park KW, Softic S, Greer TM, Keledjian R, et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol. 2004;5(4):388–92.

    Article  CAS  PubMed  Google Scholar 

  41. Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  42. Mizunoe S, Shuto T, Suzuki S, Matsumoto C, Watanabe K, Ueno-Shuto K, et al. Synergism between interleukin (IL)-17 and Toll-like receptor 2 and 4 signals to induce IL-8 expression in cystic fibrosis airway epithelial cells. J Pharmacol Sci. 2012;118(4):512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaman MM, Gelrud A, Junaidi O, Regan MM, Warny M, Shea JC, et al. Interleukin 8 secretion from monocytes of subjects heterozygous for the deltaF508 cystic fibrosis transmembrane conductance regulator gene mutation is altered. Clin Diagn Lab Immunol. 2004;11(5):819–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jundi K, Greene CM. Transcription of Interleukin-8: how altered regulation can affect cystic fibrosis lung disease. Biomol Ther. 2015;5(3):1386–98.

    CAS  Google Scholar 

  45. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Denning GM, Wollenweber LA, Railsback MA, Cox CD, Stoll LL, Britigan BE. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect Immun. 1998;66(12):5777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ierano T, Cescutti P, Leone MR, Luciani A, Rizzo R, Raia V, et al. The lipid A of Burkholderia multivorans C1576 smooth-type lipopolysaccharide and its pro-inflammatory activity in a cystic fibrosis airways model. Innate Immun. 2010;16(6):354–65.

    Article  CAS  PubMed  Google Scholar 

  48. Chekabab SM, Silverman RJ, Lafayette SL, Luo Y, Rousseau S, Nguyen D. Staphylococcus aureus inhibits IL-8 responses induced by Pseudomonas aeruginosa in airway epithelial cells. PLoS One. 2015;10(9):e0137753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Filkins LM, O’Toole GA. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. 2015;11(12):e1005258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chakraborty D, Zenker S, Rossaint J, Holscher A, Pohlen M, Zarbock A, et al. Alarmin S100A8 activates alveolar epithelial cells in the context of acute lung injury in a TLR4-dependent manner. Front Immunol. 2017;8:1493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Berube J, Roussel L, Nattagh L, Rousseau S. Loss of cystic fibrosis transmembrane conductance regulator function enhances activation of p38 and ERK MAPKs, increasing interleukin-6 synthesis in airway epithelial cells exposed to Pseudomonas aeruginosa. J Biol Chem. 2010;285(29):22299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horsley AR, Davies JC, Gray RD, Macleod KA, Donovan J, Aziz ZA, et al. Changes in physiological, functional and structural markers of cystic fibrosis lung disease with treatment of a pulmonary exacerbation. Thorax. 2013;68(6):532–9.

    Article  PubMed  Google Scholar 

  54. Gifford AH, Moulton LA, Dorman DB, Olbina G, Westerman M, Parker HW, et al. Iron homeostasis during cystic fibrosis pulmonary exacerbation. Clin Transl Sci. 2012;5(4):368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nixon LS, Yung B, Bell SC, Elborn JS, Shale DJ. Circulating immunoreactive interleukin-6 in cystic fibrosis. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1764–9.

    Article  CAS  PubMed  Google Scholar 

  56. Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A. 2014;111(35):E3641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saint-Criq V, Villeret B, Bastaert F, Kheir S, Hatton A, Cazes A, et al. Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator-IL-6-antimicrobial-repair pathway. Thorax. 2018;73(1):49–61.

    Article  PubMed  Google Scholar 

  58. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101(2):311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsai HC, Velichko S, Hung LY, Wu R. IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol. 2013;2013:267971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479–89.

    Article  CAS  PubMed  Google Scholar 

  61. Dubin PJ, McAllister F, Kolls JK. Is cystic fibrosis a TH17 disease? Inflamm Res. 2007;56(6):221–7.

    Article  CAS  PubMed  Google Scholar 

  62. Tan HL, Regamey N, Brown S, Bush A, Lloyd CM, Davies JC. The Th17 pathway in cystic fibrosis lung disease. Am J Respir Crit Care Med. 2011;184(2):252–8.

    Article  CAS  PubMed  Google Scholar 

  63. Brodlie M, McKean MC, Johnson GE, Anderson AE, Hilkens CM, Fisher AJ, et al. Raised interleukin-17 is immunolocalised to neutrophils in cystic fibrosis lung disease. Eur Respir J. 2011;37(6):1378–85.

    Article  CAS  PubMed  Google Scholar 

  64. Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010;21(6):425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bertolotto M, Contini P, Ottonello L, Pende A, Dallegri F, Montecucco F. Neutrophil migration towards C5a and CXCL8 is prevented by non-steroidal anti-inflammatory drugs via inhibition of different pathways. Br J Pharmacol. 2014;171(14):3376–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scheuren N, Bang H, Munster T, Brune K, Pahl A. Modulation of transcription factor NF-kappaB by enantiomers of the nonsteroidal drug ibuprofen. Br J Pharmacol. 1998;123(4):645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tegeder I, Niederberger E, Israr E, Guhring H, Brune K, Euchenhofer C, et al. Inhibition of NF-kappaB and AP-1 activation by R- and S-flurbiprofen. FASEB J. 2001;15(3):595–7.

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Puhl AC, Milton FA, Cvoro A, Sieglaff DH, Campos JC, Bernardes A, et al. Mechanisms of peroxisome proliferator activated receptor gamma regulation by non-steroidal anti-inflammatory drugs. Nucl Recept Signal. 2015;13:e004.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-{gamma} as a regulator of lung inflammation and repair. Proc Am Thorac Soc. 2005;2(3):226–31.

    Article  CAS  PubMed  Google Scholar 

  71. Asada K, Sasaki S, Suda T, Chida K, Nakamura H. Antiinflammatory roles of peroxisome proliferator-activated receptor gamma in human alveolar macrophages. Am J Respir Crit Care Med. 2004;169(2):195–200.

    Article  PubMed  Google Scholar 

  72. Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest. 2006;116(3):598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;49(10):497–505.

    Article  CAS  PubMed  Google Scholar 

  74. Perez A, van Heeckeren AM, Nichols D, Gupta S, Eastman JF, Davis PB. Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dauletbaev N, Lam J, Eklove D, Iskandar M, Lands LC. Ibuprofen modulates NF-kB activity but not IL-8 production in cystic fibrosis respiratory epithelial cells. Respiration. 2010;79(3):234–42.

    Article  CAS  PubMed  Google Scholar 

  76. Chmiel JF, Konstan MW, Accurso FJ, Lymp J, Mayer-Hamblett N, VanDevanter DR, et al. Use of ibuprofen to assess inflammatory biomarkers in induced sputum: implications for clinical trials in cystic fibrosis. J Cyst Fibros. 2015;14(6):720–6.

    Article  CAS  PubMed  Google Scholar 

  77. Shah PN, Marshall-Batty KR, Smolen JA, Tagaev JA, Chen Q, Rodesney CA, et al. Antimicrobial activity of ibuprofen against cystic fibrosis-associated gram-negative pathogens. Antimicrob Agents Chemother. 2018;62(3).

    Google Scholar 

  78. Carlile GW, Robert R, Goepp J, Matthes E, Liao J, Kus B, et al. Ibuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking. J Cyst Fibros. 2015;14(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  79. Konstan MW, Byard PJ, Hoppel CL, Davis PB. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med. 1995;332(13):848–54.

    Article  CAS  PubMed  Google Scholar 

  80. Lands LC, Milner R, Cantin AM, Manson D, Corey M. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr. 2007;151(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  81. Konstan MW, Schluchter MD, Xue W, Davis PB. Clinical use of ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am J Respir Crit Care Med. 2007;176(11):1084–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Konstan MW, VanDevanter DR, Sawicki GS, Pasta DJ, Foreman AJ, Neiman EA, et al. Association of high-dose ibuprofen use, lung function decline, and long-term survival in children with cystic fibrosis. Ann Am Thorac Soc. 2018;15(4):485–93.

    Article  PubMed  Google Scholar 

  83. Kovesi TA, Swartz R, MacDonald N. Transient renal failure due to simultaneous ibuprofen and aminoglycoside therapy in children with cystic fibrosis. N Engl J Med. 1998;338(1):65–6.

    Article  CAS  PubMed  Google Scholar 

  84. Lahiri T, Guillet A, Diehl S, Ferguson M. High-dose ibuprofen is not associated with increased biomarkers of kidney injury in patients with cystic fibrosis. Pediatr Pulmonol. 2014;49(2):148–53.

    Article  PubMed  Google Scholar 

  85. Konstan MW. Ibuprofen therapy for cystic fibrosis lung disease: revisited. Curr Opin Pulm Med. 2008;14(6):567–73.

    Article  CAS  PubMed  Google Scholar 

  86. Fennell PB, Quante J, Wilson K, Boyle M, Strunk R, Ferkol T. Use of high-dose ibuprofen in a pediatric cystic fibrosis center. J Cyst Fibros. 2007;6(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  87. Bruch BA, Singh SB, Ramsey LJ, Starner TD. Impact of a cystic fibrosis transmembrane conductance regulator (CFTR) modulator on high-dose ibuprofen therapy in pediatric cystic fibrosis patients. Pediatr Pulmonol. 2018;53:1035.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chmiel JF, Konstan MW, Elborn JS. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harb Perspect Med. 2013;3(10):a009779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Stahn C, Lowenberg M, Hommes DW, Buttgereit F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol. 2007;275(1–2):71–8.

    Article  CAS  PubMed  Google Scholar 

  90. Rebeyrol C, Saint-Criq V, Guillot L, Riffault L, Corvol H, Chadelat K, et al. Glucocorticoids reduce inflammation in cystic fibrosis bronchial epithelial cells. Cell Signal. 2012;24(5):1093–9.

    Article  CAS  PubMed  Google Scholar 

  91. Bedard M, McClure CD, Schiller NL, Francoeur C, Cantin A, Denis M. Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am J Respir Cell Mol Biol. 1993;9(4):455–62.

    Article  CAS  PubMed  Google Scholar 

  92. Dauletbaev N, Herscovitch K, Das M, Chen H, Bernier J, Matouk E, et al. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1. Br J Pharmacol. 2015;172(19):4757–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Belvisi MG. Regulation of inflammatory cell function by corticosteroids. Proc Am Thorac Soc. 2004;1(3):207–14.

    Article  CAS  PubMed  Google Scholar 

  94. Auerbach HS, Williams M, Kirkpatrick JA, Colten HR. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet. 1985;2(8457):686–8.

    Article  CAS  PubMed  Google Scholar 

  95. Eigen H, Rosenstein BJ, FitzSimmons S, Schidlow DV. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr. 1995;126(4):515–23.

    Article  CAS  PubMed  Google Scholar 

  96. Lai HC, FitzSimmons SC, Allen DB, Kosorok MR, Rosenstein BJ, Campbell PW, et al. Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N Engl J Med. 2000;342(12):851–9.

    Article  CAS  PubMed  Google Scholar 

  97. Hester KL, Powell T, Downey DG, Elborn JS, Jarad NA. Glucocorticoids as an adjuvant treatment to intravenous antibiotics for cystic fibrosis pulmonary exacerbations: a UK Survey. J Cyst Fibros. 2007;6(4):311–3.

    Article  CAS  PubMed  Google Scholar 

  98. Dovey M, Aitken ML, Emerson J, McNamara S, Waltz DA, Gibson RL. Oral corticosteroid therapy in cystic fibrosis patients hospitalized for pulmonary exacerbation: a pilot study. Chest. 2007;132(4):1212–8.

    Article  CAS  PubMed  Google Scholar 

  99. https://clinicaltrials.gov/ct2/show/NCT03070522. Accession Date: 29 Nov 2018.

  100. Mogayzel PJ Jr, Naureckas ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–9.

    Article  PubMed  Google Scholar 

  101. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P. Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun. 2006;350(4):977–82.

    Article  CAS  PubMed  Google Scholar 

  102. Fan LC, Lin JL, Yang JW, Mao B, Lu HW, Ge BX, et al. Macrolides protect against Pseudomonas aeruginosa infection via inhibition of inflammasomes. Am J Physiol Lung Cell Mol Physiol. 2017;313(4):L677–L86.

    Article  PubMed  Google Scholar 

  103. Meyer M, Huaux F, Gavilanes X, van den Brule S, Lebecque P, Lo Re S, et al. Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis. Am J Respir Cell Mol Biol. 2009;41(5):590–602.

    Article  CAS  PubMed  Google Scholar 

  104. Ratjen F, Saiman L, Mayer-Hamblett N, Lands LC, Kloster M, Thompson V, et al. Effect of azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa. Chest. 2012;142(5):1259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749–56.

    Article  CAS  PubMed  Google Scholar 

  106. Mayer-Hamblett N, Retsch-Bogart G, Kloster M, Accurso F, Rosenfeld M, Albers G, et al. Azithromycin for early pseudomonas infection in cystic fibrosis. The OPTIMIZE Randomized Trial. Am J Respir Crit Care Med. 2018;198(9):1177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barnaby R, Koeppen K, Nymon A, Hampton TH, Berwin B, Ashare A, et al. Lumacaftor (VX-809) restores the ability of CF macrophages to phagocytose and kill Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2018;314(3):L432–L8.

    Article  PubMed  CAS  Google Scholar 

  108. Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014;190(2):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hisert KB, Heltshe SL, Pope C, Jorth P, Wu X, Edwards RM, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med. 2017;195(12):1617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a context of inflammation-induced pathology. Front Immunol. 2017;8:1438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Frioni A, Conte MP, Cutone A, Longhi C, Musci G, di Patti MC, et al. Lactoferrin differently modulates the inflammatory response in epithelial models mimicking human inflammatory and infectious diseases. Biometals. 2014;27(5):843–56.

    Article  CAS  PubMed  Google Scholar 

  112. Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis. 2004;190(7):1245–53.

    Article  CAS  PubMed  Google Scholar 

  113. Conner GE, Salathe M, Forteza R. Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am J Respir Crit Care Med. 2002;166(12 Pt 2):S57–61.

    Article  PubMed  Google Scholar 

  114. Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB Jr, Nauseef WM, et al. A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med. 2007;175(2):174–83.

    Article  CAS  PubMed  Google Scholar 

  115. Chandler JD, Min E, Huang J, McElroy CS, Dickerhof N, Mocatta T, et al. Anti-inflammatory and anti-microbial effects of thiocyanate in a cystic fibrosis mouse model. Am J Respir Cell Mol Biol. 2015;53(2):193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chandler JD, Nichols DP, Nick JA, Hondal RJ, Day BJ. Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J Biol Chem. 2013;288(25):18421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol. 2012;84(11):1381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lorentzen D, Durairaj L, Pezzulo AA, Nakano Y, Launspach J, Stoltz DA, et al. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radic Biol Med. 2011;50(9):1144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moreau-Marquis S, Coutermarsh B, Stanton BA. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J Antimicrob Chemother. 2015;70(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  120. https://clinicaltrials.gov/ct2/show/NCT02598999. Accession Date: 29 Nov 2018.

  121. Burstein SH. Ajulemic acid: potential treatment for chronic inflammation. Pharmacol Res Perspect. 2018;6(2):e00394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Burstein SH. The cannabinoid acids, analogs and endogenous counterparts. Bioorg Med Chem. 2014;22(10):2830–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ribeiro CM, Zhang G, Lubamba BA, Tepper M. Anabasum reduces excessive inflammatory responses in cystic fibrosis patient-derived lung macrophages. Pediatr Pulmonol. 2017;52(S47):251.

    Google Scholar 

  124. Martiniano SL, Toprak D, Ong T, Zemanick ET, Daines CL, Muhlebach MS, et al. Highlights from the 2017 north American cystic fibrosis conference. Pediatr Pulmonol. 2018;53(7):979–86.

    Article  PubMed  Google Scholar 

  125. Chmiel J, Elborn S, Constantine S, White B. A double-blind placebo-conrolled phase 2 study in adults with cystic fibrosis of anabasum, a selective cannabinoid receptor type 2 agonist. Pediatr Pulmonol. 2017;52(S47):317.

    Google Scholar 

  126. https://clinicaltrials.gov/ct2/show/NCT03451045. Accession Date: 29 Nov 2018.

  127. Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol. 2012;91(2):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Afonso PV, Janka-Junttila M, Lee YJ, McCann CP, Oliver CM, Aamer KA, et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev Cell. 2012;22(5):1079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Elborn JS, Horsley A, MacGregor G, Bilton D, Grosswald R, Ahuja S, et al. Phase I studies of acebilustat: biomarker response and safety in patients with cystic fibrosis. Clin Transl Sci. 2017;10(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  130. Rowe SM, Elborn JS. EMPIRE-CF: a phase 2 trial of a novel anti-inflammatory molecule, acebilustat, in patients with cystic fibrosis. Pediatr Pulmonol. 2018;53(S2):136–7.

    Google Scholar 

  131. https://clinicaltrials.gov/ct2/show/NCT03265288. Accession Date: 29 Nov 2018.

  132. AbuArish A, Garic D, Pislariu R, Radzioch D, Hanrahan JW. Fenretinide increases CFTR functional expression and recruitment in ceramide microdomains. Pediatr Pulmonol. 2018;53(S2):260.

    Google Scholar 

  133. Polineni D, Dang H, Gallins PJ, Jones LC, Pace RG, Stonebraker JR, et al. Airway mucosal host defense is key to genomic regulation of cystic fibrosis lung disease severity. Am J Respir Crit Care Med. 2018;197(1):79–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex H. Gifford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polineni, D., Nichols, D., Gifford, A.H. (2020). Inflammation in CF: Key Characteristics and Therapeutic Discovery. In: Davis, S., Rosenfeld, M., Chmiel, J. (eds) Cystic Fibrosis. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-42382-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42382-7_8

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-42381-0

  • Online ISBN: 978-3-030-42382-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics