Abstract
One of the most prominent problems in machine learning in the age of deep learning is the availability of sufficiently large annotated datasets. For specific domains, e.g. animal species, a long-tail distribution means that some classes are observed and annotated insufficiently. Additional labels can be prohibitively expensive, e.g. because domain experts need to be involved. However, there is more information available that is to the best of our knowledge not exploited accordingly.
In this paper, we propose to make use of preexisting class hierarchies like WordNet to integrate additional domain knowledge into classification. We encode the properties of such a class hierarchy into a probabilistic model. From there, we derive a novel label encoding and a corresponding loss function. On the ImageNet and NABirds datasets our method offers a relative improvement of \(10.4\%\) and \(9.6\%\) in accuracy over the baseline respectively. After less than a third of training time, it is already able to match the baseline’s fine-grained recognition performance. Both results show that our suggested method is efficient and effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bart, E., et al.: Unsupervised learning of visual taxonomies. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Barz, B., Denzler, J.: Hierarchy-based image embeddings for semantic image retrieval. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 638–647, January 2019
Benkhalifa, M., Mouradi, A., Bouyakhf, H.: Integrating WordNet knowledge to supplement training data in semi-supervised agglomerative hierarchical clustering for text categorization. Int. J. Intell. Syst. 16(8), 929–947 (2001)
Bilal, A., et al.: Do convolutional neural networks learn class hierarchy? IEEE Trans. Vis. Comput. Graph. 24(1), 152–162 (2018)
Brust, C.-A., Denzler, J.: Not just a matter of semantics: the relationship between visual similarity and semantic similarity. arXiv:1811.07120 [cs], 17 November 2018
Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
Deng, J., et al.: Large-scale object classification using label relation graphs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 48–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_4
Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6
Deselaers, T., Ferrari, V.: Visual and semantic similarity in imagenet. In: Computer Vision and Pattern Recognition (CVPR), pp. 1777–1784 (2011)
Faghri, F., et al.: VSE++: improving visual-semantic embeddings with hard negatives. arXiv:1707.05612 [cs], 18 July 2017
Fellbaum, C.: WordNet. Wiley Online Library (1998)
Fergus, R., Bernal, H., Weiss, Y., Torralba, A.: Semantic label sharing for learning with many categories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 762–775. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_55
Frome, A., et al.: DeViSE: a deep visual-semantic embedding model. In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26, pp. 2121–2129. Curran Associates Inc. (2013)
Gaussier, E., Goutte, C., Popat, K., Chen, F.: A hierarchical model for clustering and categorising documents. In: Crestani, F., Girolami, M., van Rijsbergen, C.J. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 229–247. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45886-7_16
He, K., et al.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR) (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Hoffman, J., et al.: LSDA: large scale detection through adaptation. arXiv preprint arXiv:1407.5035, 18 July 2014
Huo, Y., Ding, M., Zhao, A., Hu, J., Wen, J.-R., Lu, Z.: Zero-shot learning with superclasses. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 460–472. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3_40
Hwang, S.J.: Discriminative object categorization with external semantic knowledge. Ph.D. thesis, August 2013
Hwang, S.J., Grauman, K., Sha, F.: Learning a tree of metrics with disjoint visual features. In: Shawe-Taylor, J., et al. (eds.) Advances in Neural Information Processing Systems 24, pp. 621–629. Curran Associates Inc. (2011)
Hwang, S.J., Sigal, L.: A unified semantic embedding: relating taxonomies and attributes. In: Advances in Neural Information Processing Systems 27, p. 9 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR), 22 December 2014. arXiv: 1412.6980v9
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. (IJCV) 123(1), 32–73 (2017)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)
Liu, C., et al.: Progressive neural architecture search. arXiv preprint arXiv:1712.00559 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2015). arXiv: 1411.4038v2
Marszalek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7, June 2007
Partalas, I., et al.: LSHTC: a benchmark for large-scale text classification. arXiv preprint arXiv:1503.08581 (2015)
Rodner, E., Denzler, J.: One-shot learning of object categories using dependent Gaussian processes. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 232–241. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_24
Rohrbach, M., Ebert, S., Schiele, B.: Transfer learning in a transductive setting. In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26, pp. 46–54. Curran Associates Inc. (2013)
Settles, B.: Active learning literature survey. Technical report 1648, University of Wisconsin-Madison (2009)
Sharif Razavian, A., et al.: CNN features off-the-shelf: an astounding baseline for recognition. In: Computer Vision and Pattern Recognition Workshops (CVPR-WS) (2014)
Srivastava, N., Salakhutdinov, R.R.: Discriminative transfer learning with tree-based priors. In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26, pp. 2094–2102. Curran Associates Inc. (2013)
Sun, C., et al.: Revisiting unreasonable effectiveness of data in deep learning era. In: International Conference on Computer Vision (ICCV), pp. 843–852 (2017)
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. Trans. Pattern Anal. Mach. Intell. (PAMI) 30(11), 1958–1970 (2008)
Van Horn, G., et al.: Building a bird recognition app and large scale dataset with citizen scientists: the fine print in fine-grained dataset collection. In: Computer Vision and Pattern Recognition (CVPR), pp. 595–604 (2015)
Van Horn, G., et al.: The iNaturalist challenge 2017 dataset. arXiv preprint arXiv:1707.06642 (2017)
Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. 22(5–6), 544–557 (2009)
Verma, N., et al.: Learning hierarchical similarity metrics. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2280–2287, June 2012
Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Wu, Q., et al.: Image captioning and visual question answering based on attributes and external knowledge. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1367–1381 (2018)
Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 2740–2748. IEEE, December 2015
Zhang, X., et al.: Embedding label structures for fine-grained feature representation, pp. 1114–1123 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Brust, CA., Denzler, J. (2020). Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-41404-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41403-0
Online ISBN: 978-3-030-41404-7
eBook Packages: Computer ScienceComputer Science (R0)