Skip to main content

Magnon Excitation and Nonlinear Dynamics

  • Chapter
  • First Online:
Fundamentals of Magnonics

Part of the book series: Lecture Notes in Physics ((LNP,volume 969))

  • 2348 Accesses

Abstract

This chapter is devoted to the study of linear and nonlinear processes and techniques for the excitation of magnons. In the presentation of the linear excitation process we employ three different quantum approaches that are commonly used and show that they are all consistent. The last one serves to show that the magnons excited by microwave radiation are in quantum coherent states. The theory is used to interpret experimental measurements. A quantum approach is also used to study the parametric excitation of magnons by three different techniques, parallel pumping, perpendicular pumping in the first-order and in the second-order Suhl processes. The four-magnon interaction is discussed in the third section and shown to have three important effects: saturation of the parametric magnon population; coherence of the parametric magnon states; and nonlinear dynamics. The last section is devoted to study the nonlinear dynamics of parametric magnons that manifests in self-oscillations in the magnon populations and chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zagury, N., Rezende, S.M.: Theory of macroscopic excitations of magnons. Phys. Rev. B. 4, 201 (1971)

    ADS  Google Scholar 

  2. Huebl, H., Zollitsch, C.W., Lotze, J., Hocke, F., Greifenstein, M., Marx, A., Gross, R., Goennenwein, S.T.B.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    ADS  Google Scholar 

  3. Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science. 349, 405 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Lachance-Quirion, D., Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Nakamura, Y.: Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 3(1603150), e1603150 (2017)

    ADS  Google Scholar 

  5. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A. 76, 042319 (2007)

    ADS  Google Scholar 

  6. Bloembergen, N., Damon, R.W.: Relaxation effects in ferromagnetic resonance. Phys. Rev. 85, 699 (1952)

    ADS  Google Scholar 

  7. Damon, R.W.: Relaxation effects in the ferromagnetic resonance. Rev. Mod. Phys. 25, 239 (1953)

    ADS  Google Scholar 

  8. Bloembergen, N., Wang, S.: Relaxation effects in para-and ferromagnetic resonance. Phys. Rev. 93, 72 (1954)

    ADS  Google Scholar 

  9. Suhl, H.: The theory of ferromagnetic resonance at high signal powers. J. Phys. Chem. Solids. 1, 209 (1957)

    ADS  Google Scholar 

  10. Morgenthaler, F.R.: Survey of ferromagnetic resonance in small ferrimagnetic ellipsoids. J. Appl. Phys. 31, 95 S (1960)

    ADS  Google Scholar 

  11. Schlömann, E., Green, J.J., Milano, U.: Recent developments in ferromagnetic resonance at high power levels. J. Appl. Phys. 31, 386 S (1960)

    ADS  Google Scholar 

  12. Kasuya, T., Le Craw, R.C.: Relaxation mechanisms in ferromagnetic resonance. Phys. Rev. Lett. 6, 223 (1961)

    ADS  Google Scholar 

  13. de Aguiar, F.M., Rezende, S.M.: Observation of subharmonic routes to chaos in parallel-pumped spin waves in yttrium iron garnet. Phys. Rev. Lett. 56, 1070 (1986)

    ADS  Google Scholar 

  14. Damon, R.W.: Ferromagnetic resonance at high power. In: Rado, G.T., Suhl, H. (eds.) Magnetism, vol. I, p. 551. Academic, New York (1963)

    Google Scholar 

  15. Azevedo, A., Rezende, S.M.: Controlling chaos in spin-wave instabilities. Phys. Rev. Lett. 66, 1342 (1991)

    ADS  Google Scholar 

  16. Kurebayashi, H., Dzyapko, O., Demidov, V.E., Fang, D., Ferguson, A.J., Demokritov, S.O.: Controlled enhancement of spin-current emission by three-magnon splitting. Nat. Mat. 10, 660 (2011)

    Google Scholar 

  17. Cunha, R.O., Holanda, J., Vilela-Leão, L.H., Azevedo, A., Rodríguez-Suárez, R.L., Rezende, S.M.: Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet. Appl. Phys. Lett. 106, 192403 (2015)

    ADS  Google Scholar 

  18. Zakharov, V.E., L’vov, V.S., Starobinets, S.S.: Spin-wave turbulence beyond the parametric excitation threshold. Usp. Fiz. Nauk. 114, 609 (1974). [Sov. Phys. Usp. 17, 896 (1975)]

    ADS  Google Scholar 

  19. de Araújo, C.B.: Quantum-statistical theory of the nonlinear excitation of magnons in parallel pumping experiments. Phys. Rev. B. 10, 3961 (1974)

    ADS  Google Scholar 

  20. Balucani, U., Barocchi, F., Tognetti, V.: Green’s-function theory of a damped Boson system (Application to an interacting Magnon system). Phys. Rev. A. 5, 442 (1972)

    ADS  Google Scholar 

  21. ter Haar, D.: Theory and applications of the density matrix. Rep. Prog. Phys. 24, 304 (1961)

    ADS  Google Scholar 

  22. Hartwick, T.S., Peressini, E.R., Weiss, M.T.: Subsidiary resonance in YIG. J. Appl. Phys. 32, 223 S (1961)

    ADS  Google Scholar 

  23. Wang, S., Thomas, G., Hsu, T.-l.: Standing-spin-wave modulation of the reflected microwave power in YIG. J. Appl. Phys. 39, 2719 (1968)

    ADS  Google Scholar 

  24. L’vov, V.S., Musher, S.L., Starobinets, S.S.: Theory of magnetization self-oscillations on parametric excitation of spin waves. Zh. Eksp. Teor. Fiz. 64, 1074 (1973) [Sov. Phys.-JETP 37, 546 (1973)]

    Google Scholar 

  25. Ozhogin, V.I., Yakubovskii, A.Y.: Parametric pairs in antiferromagnet with easy plane anisotropy. Z. Eksp. Teor. Fiz. 67, 287 (1974). [Sov. Phys. JETP 40, 144 (1975)]

    Google Scholar 

  26. Nakamura, K., Ohta, S., Kawasaki, K.: Chaotic states of ferromagnets in strong parallel pumping fields. J. Phys. C: D. 15, L143 (1982)

    ADS  Google Scholar 

  27. Gibson, G., Jeffries, C.: Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet. Phys. Rev. A. 29, 811 (1984)

    ADS  Google Scholar 

  28. Bryant, P., Jeffries, C., Nakamura, K.: Spin-wave nonlinear dynamics in an yttrium iron garnet sphere. Phys. Rev. Lett. 60, 1185 (1988)

    ADS  Google Scholar 

  29. Rezende, S.M., de Aguiar, F.M.: Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet. Proc. IEEE. 78, 893 (1990)

    Google Scholar 

  30. Rezende, S.M., Azevedo, A.: Self-oscillations in spin-wave instabilities. Phys. Rev. B. 45(10), 387 (1992)

    Google Scholar 

  31. Suhl, H., Zhang, X.Y.: Theory of auto-oscillations in high-power ferromagnetic resonance. Phys. Rev. B. 38, 4893 (1988)

    ADS  Google Scholar 

  32. Rezende, S.M., Azevedo, A., de Aguiar, F.M.: Spin-wave instabilities, auto-oscillations, chaos, and control of chaos in YIG spheres. In: Cottam, M.G. (ed.) Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices. World Scientific, Singapore (1994)

    Google Scholar 

  33. de Aguiar, F.M., Azevedo, A., Rezende, S.M.: Characterization of strange attractors in spin-wave chaos. Phys. Rev. B. 39(9), 448 (1989)

    Google Scholar 

Further Reading

  • Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North-Holland, Amsterdam (1968)

    Google Scholar 

  • Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1977)

    MATH  Google Scholar 

  • Cottam, M.G. (ed.): Linear and nonlinear spin waves in magnetic films and superlattices. World Scientific, Singapore (1994)

    Google Scholar 

  • Gurevich, A.G., Melkov, G.A.: Magnetization Oscillations and Waves. CRC, Boca Raton (1994)

    Google Scholar 

  • Kabos, P., Stalmachov, V.S.: Magnetostatic Waves and Their Applications. Chapman and Hall, London (1994)

    Google Scholar 

  • Keffer, F.: Spin Waves. In: Flugge, S. (ed.) Handbuch der Physik, vol. XVIII/B. Springer, Berlin (1966)

    Google Scholar 

  • Lax, B., Button, K.J.: Microwave Ferrites and Ferrimagnetics. McGraw-Hill, New York (1962)

    Google Scholar 

  • L’vov, V.S.: Turbulence Under Parametric Excitation, Applications to Magnets. Springer, Berlin (1994)

    MATH  Google Scholar 

  • Nussenzweig, H.M.: Topics in Quantum Optics. Gordon and Breach, New York (1973)

    Google Scholar 

  • Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, New York (2012)

    Google Scholar 

  • Sparks, M.: Ferromagnetic Relaxation. McGraw-Hill, New York (1964)

    Google Scholar 

  • Stancil, D.D., Prabhakar, A.: Spin Waves: Theory and Applications. Springer Science, New York (2009)

    MATH  Google Scholar 

  • White, R.M.: Quantum Theory of Magnetism, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  • Wigen, P.E. (ed.): Nonlinear phenomena and chaos in magnetic materials. World Scientific, Singapore (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezende, S.M. (2020). Magnon Excitation and Nonlinear Dynamics. In: Fundamentals of Magnonics. Lecture Notes in Physics, vol 969. Springer, Cham. https://doi.org/10.1007/978-3-030-41317-0_6

Download citation

Publish with us

Policies and ethics