Skip to main content

Spin Waves in Ferromagnets: Semiclassical Approach

  • Chapter
  • First Online:
Fundamentals of Magnonics

Part of the book series: Lecture Notes in Physics ((LNP,volume 969))

Abstract

In Chap. 1, we considered only the case of the magnetization dynamics that is uniform in space. The more general situation consists of a magnetization that varies in space, with elementary excitations that are called spin waves, the quanta of which are magnons. In this chapter, we shall treat spin waves considering that the spins are classical vectors with motion governed by the classical equation for the torque. We begin with a study of spin waves in an one-dimensional chain of classical spins. Then we present a macroscopic view of long-wavelength spin waves in a 3-dimensional ferromagnet, with an approach based on the Landau–Lifshitz equation of motion for the magnetization. Then we consider that the magnetization interacts with the lattice vibrations giving origin to coupled spin and elastic waves, called magnetoelastic waves, and discuss the conservation laws involved. We also present the concept of coupled spins and electromagnetic waves, called magnetic polaritons. Finally, we present two of the most important experimental techniques to study magnetoelastic waves, microwave excitation, and Brillouin light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloch, F.: Zur Theorie des Ferromagnetismus. Z. Physik. 61, 206 (1930)

    Article  ADS  Google Scholar 

  2. Herring, C., Kittel, C.: On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869 (1951)

    Article  ADS  Google Scholar 

  3. Eshbach, J.R.: Spin-wave propagation and the magnetoelastic interaction in yttrium iron garnet. Phys. Rev. Lett. 8, 357 (1962)

    Article  ADS  Google Scholar 

  4. Strauss, W.: Magnetoelastic waves in yttrium Iron garnet. J. Appl. Phys. 36, 118 (1965)

    Article  ADS  Google Scholar 

  5. Rezende, S.M., Morgenthaler, F.R.: Magnetoelastic waves in time-varying magnetic fields. I. Theory. J. Appl. Phys. 40, 524 (1969)

    Article  ADS  Google Scholar 

  6. Kittel, C.: Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  7. Akhiezer, A. I., Bar’yakhtar, V. G., Peletminskii, S. V.: Coupled magnetoelastic waves in ferromagnetic media and ferroacoustical resonance, Zh. Eksperim. i Teor. Fiz. 35, 228 (1958) [English transl.: Soviet Phys.-JETP 8, 157 (1959)]

    Google Scholar 

  8. Auld, B.A.: Magnetostatic and magnetoelastic wave propagation in solids. In: Wolfe, R. (ed.) Applied Solid State Science, vol. 2. Academic Press, New York (1971)

    Google Scholar 

  9. Schlömann, E.: Generation of phonons in high-power ferromagnetic resonance experiments. J. Appl. Phys. 31, 1647 (1960)

    Article  ADS  Google Scholar 

  10. Morgenthaler, F.R.: Exchange energy, stress, and momentum in a rigid ferrimagnet. J. Appl. Phys. 38, 1069 (1967)

    Article  ADS  Google Scholar 

  11. Morgenthaler, F. R.: Small Signal Power and Momentum Theorems for a Magnetoelastic Ferromagnet. Microwave and Quantum Magnetics Group Technical Report 14, Massachusetts Institute of Technology (1967)

    Google Scholar 

  12. Camley, R.E., Maradudin, A.A.: Power flow in magnetoelastic media. Phys. Rev. B. 24, 1255 (1981)

    Article  ADS  Google Scholar 

  13. Mills, D.L., Burstein, E.: Polaritons: the electromagnetic modes of media. Rep. Prog. Phys. 37, 817 (1974)

    Article  ADS  Google Scholar 

  14. Huebl, H., Zollitsch, C.W., Lotze, J., Hocke, F., Greifenstein, M., Marx, A., Gross, R., Goennenwein, S.T.B.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  15. Bai, L., Harder, M., Chen, Y.P., Fan, X., Xiao, J.Q., Hu, C.-M.: Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 114, 227201 (2015)

    Article  ADS  Google Scholar 

  16. Hyde, P., Bai, L., Harder, M., Dyck, C., Hu, C.-M.: Linking magnon-cavity strong coupling to magnon-polaritons through effective permeability. Phys. Rev. B. 95, 094416 (2017)

    Article  ADS  Google Scholar 

  17. Lim, J., Bang, W., Trossman, J., Kreisel, A., Jungfleisch, M.B., Hoffmann, A., Tsai, C.C., Ketterson, J.B.: Direct detection of multiple backward volume modes yttrium iron garnet at micron scale wavelengths. Phys. Rev. B. 99, 014435 (2019)

    Article  ADS  Google Scholar 

  18. Seavey Jr., M.H., Tannenwald, P.E.: Direct observation of spin wave resonance. Phys. Rev. Lett. 1, 168 (1958)

    Article  ADS  Google Scholar 

  19. Eshbach, J.R.: Spin wave propagation and the magnetoelastic interaction in yttrium iron garnet. Phys. Rev. Lett. 8, 357 (1962)

    Article  ADS  Google Scholar 

  20. Eshbach, J.R.: Spin wave propagation and the magnetoelastic interaction in yttrium iron garnet. J. Appl. Phys. 34, 1298 (1963)

    Article  ADS  Google Scholar 

  21. Schlömann, E., Joseph, R.I.: Generation of spin waves in nonuniform magnetic fields. III. Magnetoelastic interaction. J. Appl. Phys. 35, 2382 (1964)

    Article  ADS  Google Scholar 

  22. Olson, F.A., Yaeger, J.R.: Microwave delay techniques using YIG. IEEE Trans. Microw. Theory Tech. 13, 63 (1965)

    Article  ADS  Google Scholar 

  23. Damon, R.W., van de Vaart, H.: Propagation of magnetostatic spin waves at microwave frequencies, II. Rods. J. Appl. Phys. 37, 2445 (1966)

    Article  ADS  Google Scholar 

  24. Strauss, W.: Magnetoelastic waves in yttrium iron garnet. J. Appl. Phys. 36, 118 (1965)

    Article  ADS  Google Scholar 

  25. Rezende, S. M.: Magnetoelastic and magnetostatic waves in time-varying magnetic fields. PhD Thesis Presented to the Massachusetts Institute of Technology (1967); Microwave and Quantum Magnetics Group Technical Report 19, MIT (1967)

    Google Scholar 

  26. Rezende, S.M., Morgenthaler, F.R.: Magnetoelastic waves in time-varying magnetic fields. II. Experiments. J. Appl. Phys. 40, 537 (1969)

    Article  ADS  Google Scholar 

  27. Sandercock, J.R.: Trends in brillouin scattering: studies of opaque materials, supported films, and central modes. In: Cardona, M., Guntherodt, G. (eds.) Topics in Applied Physics: Light Scattering in Solids III, vol. 51. Spinger, Heidelberg (1982)

    Google Scholar 

  28. Sandercock, J.R., Wettling, W.: Light scattering from thermal acoustic magnons in yttrium iron garnet. Solid State Comm. 13, 1729 (1973)

    Article  ADS  Google Scholar 

  29. Patton, C.: Magnetic excitations in solids. Phys. Rep. 103, 251 (1984)

    Article  ADS  Google Scholar 

  30. Rodríguez-Suárez, R. L.: Magnetoelectronic Phenomena in Metallic Interfaces. PhD Thesis presented to the Physics Department, Universidade Federal de Pernambuco, Recife, Brazil (2006)

    Google Scholar 

  31. GrĂĽnberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  32. Vohl, M., Barnás, J., Grünberg, P.: Effect of interlayer exchange coupling on spin wave spectra in magnetic double layers: theory and experiments. Phys. Rev. B. 39, 12003 (1989)

    Article  ADS  Google Scholar 

  33. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  34. Binasch, G., GrĂĽnberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B. 39, 4828 (1989)

    Article  ADS  Google Scholar 

Further Reading

  • Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North-Holland, Amsterdam (1968)

    Google Scholar 

  • Cottam, M.G., Lockwood, D.J.: Light Scattering in Magnetic Solids. Wiley, New York (1986)

    Google Scholar 

  • Gurevich, A.G., Melkov, G.A.: Magnetization Oscillations and Waves. CRC Press, Boca Raton, FL (1994)

    Google Scholar 

  • Hayes, W., Loudon, R.: Scattering of Light by Crystals. Wiley, New York (1978)

    Google Scholar 

  • Kabos, P., Stalmachov, V.S.: Magnetostatic Waves and their Applications. Chapman and Hall, London (1994)

    Book  Google Scholar 

  • Keffer, F.: Spin Waves. In: Flugge, S. (ed.) Handbuch der Physik, vol. XVIII/B. Springer, Heidelberg (1966)

    Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    MATH  Google Scholar 

  • Lax, B., Button, K.: Microwave Ferrites and Ferrimagnetics. McGraw-Hill, New York (1962)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1970)

    MATH  Google Scholar 

  • Sparks, M.: Ferromagnetic Relaxation. Mc Graw-Hill, New York (1964)

    Google Scholar 

  • Stancil, D.D., Prabhakar, A.: Spin Waves: Theory and Applications. Springer Science, New York (2009)

    Google Scholar 

  • White, R.M.: Quantum Theory of Magnetism, 3rd edn. Springer, Heidelberg (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezende, S.M. (2020). Spin Waves in Ferromagnets: Semiclassical Approach. In: Fundamentals of Magnonics. Lecture Notes in Physics, vol 969. Springer, Cham. https://doi.org/10.1007/978-3-030-41317-0_2

Download citation

Publish with us

Policies and ethics