Skip to main content

The Zero Wave Number Magnon: Ferromagnetic Resonance

  • Chapter
  • First Online:
Fundamentals of Magnonics

Part of the book series: Lecture Notes in Physics ((LNP,volume 969))

Abstract

This initial chapter is devoted to a basic phenomenon in magnetism, the ferromagnetic resonance (FMR). When driven by a microwave field with frequency of the FMR, the magnetization precesses about its equilibrium direction without variation in space. This corresponds to a spin wave with infinite wavelength, or zero wave number. Since the quanta of spin waves are called magnons, the FMR mode corresponds to a zero wave number magnon. Initially, we introduce the main features of magnetic materials necessary to the remainder of the book. Details about the origins of magnetism in matter and the spin interactions can be found in several books listed at the end of the chapter. Then we treat the magnetic resonance phenomenon and go on to study in detail the ferromagnetic resonance in bulk samples and in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau, L.D., Lifshitz, E.M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion. 8, 153 (1935)

    MATH  Google Scholar 

  2. Kittel, C.: Interpretation of Anomalous Larmor frequencies in ferromagnetic resonance experiment. Phys. Rev. 71, 270 (1947)

    Article  ADS  Google Scholar 

  3. Griffiths, J.H.E.: Anomalous high-frequency resistance of ferromagnetic metals. Nature. 158, 670 (1946)

    Article  ADS  Google Scholar 

  4. Gilbert, T.L.: Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  5. Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  6. Bloembergen, N.: On the ferromagnetic resonance in nickel and supermalloy. Phys. Rev. 78, 572 (1950)

    Article  ADS  Google Scholar 

  7. Suhl, H.: Ferromagnetic resonance in nickel ferrite between one and two kilomegacycles. Phys. Rev. 97, 555 (1955)

    Article  ADS  Google Scholar 

  8. Smit, J., Beljers, G.: Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal. Philips Res. Rep. 10, 113 (1955)

    Google Scholar 

  9. Honda, K., Kaya, S.: On magnetization of single crystals of iron. Sci. Rept. Tohoku Imp. Univ. 15, 721 (1926)

    Google Scholar 

  10. Azevedo, A., Alves Santos, O., Fonseca Guerra, G.A., Cunha, R.O., Rodríguez-Suárez, R., Rezende, S.M.: Competing spin pumping effects in magnetic hybrid structures. Appl. Phys. Lett. 104, 052402 (2014)

    Article  ADS  Google Scholar 

  11. Rezende, S.M., Rodríguez-Suárez, R.L., Soares, M.M., Vilela-Leão, L.H., Ley Domínguez, D., Azevedo, A.: Enhanced spin pumping damping in yttrium iron garnet/Pt bilayers. Appl. Phys. Lett. 102, 012402 (2013)

    Article  ADS  Google Scholar 

  12. Serga, A.A., Chumak, A.V., Hillebrands, B.: YIG Magnonics. J. Phys. D. Appl. Phys. 43, 264002 (2010)

    Article  ADS  Google Scholar 

  13. Rado, G.T.: Theory of ferromagnetic resonance and static magnetization in ultrathin crystals. Phys. Rev. B. 26, 295 (1982)

    Article  ADS  Google Scholar 

  14. Fermin, J.R., Azevedo, A., de Aguiar, F.M., Li, B., Rezende, S.M.: Ferromagnetic resonance linewidth and anisotropy dispersions in thin Fe films. J. Appl. Phys. 85, 7316 (1999)

    Article  ADS  Google Scholar 

  15. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  16. Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mat. 192, 203 (1999)

    Article  ADS  Google Scholar 

  17. Rodríguez-Suárez, R.L., Oliveira, A.B., Estrada, F., Maior, D.S., Arana, M., Alves Santos, O., Azevedo, A., Rezende, S.M.: Rotatable anisotropy on ferromagnetic/antiferromagnetic bilayer investigated by Brillouin light scattering. J. Appl. Phys. 123, 043901 (2018)

    Article  ADS  Google Scholar 

  18. Qiu, Z.Q., Bader, S.D.: Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243 (2000)

    Article  ADS  Google Scholar 

  19. Xi, H., White, R.M., Rezende, S.M.: Irreversible and reversible measurements of exchange anisotropy. Phys. Rev. B. 60, 14637 (1999)

    Article  ADS  Google Scholar 

Further Reading

  • Abragam, A., Bleaney, B. (eds.): Electron Paramagnetic Resonance of Transition Ions. Clarendon, Oxford (1970)

    Google Scholar 

  • Blundell, S.: Magnetism in Condensed Matter. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Chikazumi, S.: Physics of Magnetism. Wiley, New York (1964)

    Google Scholar 

  • Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Guimarães, A.P.: Magnetism and Magnetic Resonance in Solids. Wiley, New York (1998)

    Google Scholar 

  • Guimarães, A.P.: Principles of Nanomagnetism, 2nd edn. Springer, Cham (2017)

    Book  Google Scholar 

  • Heinrich, B., Bland, J.A.C. (eds.): Ultrathin Magnetic Structures II. Springer, Heidelberg (1994)

    Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    MATH  Google Scholar 

  • Lax, B., Button, K.: Microwave Ferrites and Ferrimagnetics. McGraw-Hill, New York (1962)

    Google Scholar 

  • Morrish, A.H.: The Physical Principles of Magnetism. IEEE Press, New York (2001)

    Book  Google Scholar 

  • Reis, M.: Fundamentals of Magnetism. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Slichter, C.P.: Principles of Magnetic Resonance. Springer, Berlin (1980)

    Google Scholar 

  • Smit, J., Wijn, H.P.J.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  • Sohoo, R.F.: Microwave Magnetics. Harper and Row, New York (1985)

    Google Scholar 

  • Vonsovskii, S.V.: Ferromagnetic Resonance. Pergamon, New York (1966)

    Google Scholar 

  • White, R.M.: Quantum Theory of Magnetism, 3rd edn. Springer, Heidelberg (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezende, S.M. (2020). The Zero Wave Number Magnon: Ferromagnetic Resonance. In: Fundamentals of Magnonics. Lecture Notes in Physics, vol 969. Springer, Cham. https://doi.org/10.1007/978-3-030-41317-0_1

Download citation

Publish with us

Policies and ethics