Skip to main content

Matching of EM Map Segments to Structurally-Relevant Bio-molecular Regions

  • Conference paper
  • First Online:
Book cover High Performance Computing (CARLA 2019)

Abstract

Electron microscopy is a technique used to determine the structure of bio-molecular machines via three-dimensional images (called maps). The state-of-the-art is able to determine structures at resolutions that allow us to identify up to secondary structural features, in some cases, but it is not widespread. Furthermore, because molecular interactions often require atomic-level details to be understood, it is still necessary to complement current maps with techniques that provide finer-grain structural details. We applied segmentation techniques to maps in the Electron Microscopy Data Bank (EMDB), the standard community repository for these data. We assessed the potential of these algorithms to match functionally relevant regions in their atomic-resolution image counterparts by comparing against three protein systems, each with multiple atomic-detailed domains. We found that at least 80% of amino acid residues in 7 out of 12 domains were assigned to single segments, suggesting there is potential to match the lower resolution segmented regions to the atomic counterparts. We also qualitatively analyzed the potential on other EMDB structures, as well as generating the raw segmentation information for the complete EMDB, for interested researchers to use. Results can be accessed online and the library developed is provided as part of an open-source project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This method is based on the combination of physico-chemical, shape and cross correlation features between each of the domains and the EM map. This work is not part of a stand-alone article as of this writing.

  2. 2.

    Note that for 1010 there are 8 missing residues, observed in the C-\(\alpha \) trace but not the PDB with all atomic details. They are ommitted for analysis purposes.

  3. 3.

    The production version of EM-SURFER is hosted at http://kiharalab.org/em-surfer. An example result from our alpha release of the latest version, that includes segmentation results, can be accessed at is available at http://emsurfer.tecdatalab.org/result/0185.

References

  1. Ahmed, A., Whitford, P.C., Sanbonmatsu, K.Y., Tama, F.: Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. J. Struct. Biol. 177(2), 561–570 (2012). https://doi.org/10.1016/j.jsb.2011.10.002

    Article  Google Scholar 

  2. Baker, M.L., Baker, M.R., Hryc, C.F., Ju, T., Chiu, W.: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Biopolymers 97(9), 655–668 (2012). https://doi.org/10.1002/bip.22065

    Article  Google Scholar 

  3. Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15(1), 7–19 (2007). https://doi.org/10.1016/j.str.2006.11.008

    Article  Google Scholar 

  4. Baker, M.L., Yu, Z., Chiu, W., Bajaj, C.: Automated segmentation of molecular subunits in electron cryomicroscopy density maps. J. Struct. Biol. 156(3), 432–441 (2006). https://doi.org/10.1016/j.jsb.2006.05.013

    Article  Google Scholar 

  5. Beck, F., et al.: Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 109(37), 14870–14875 (2012). https://doi.org/10.1073/pnas.1213333109

    Article  Google Scholar 

  6. Beck, M., et al.: Exploring the spatial and temporal organization of a cell’s proteome. J. Struct. Biol. 173(3), 483–496 (2011). https://doi.org/10.1016/j.jsb.2010.11.011

    Article  Google Scholar 

  7. Burley, S.K., et al.: Protein data bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47(D1), D520–D528 (2019). https://doi.org/10.1093/nar/gky949

    Article  Google Scholar 

  8. Dou, H., Burrows, D.W., Baker, M.L., Ju, T.: Flexible fitting of atomic models into cryo-EM density maps guided by helix correspondences. Biophys. J. 112(12), 2479–2493 (2017). https://doi.org/10.1016/j.bpj.2017.04.054

    Article  Google Scholar 

  9. Esquivel-Rodríguez, J., Xiong, Y., Han, X., Guang, S., Christoffer, C., Kihara, D.: Navigating 3D electron microscopy maps with EM-SURFER. BMC Bioinform. 16, 181 (2015). https://doi.org/10.1186/s12859-015-0580-6

    Article  Google Scholar 

  10. Fabiola, F., Chapman, M.S.: Fitting of high-resolution structures into electron microscopy reconstruction images. Structure 13(3), 389–400 (2005). https://doi.org/10.1016/j.str.2005.01.007

    Article  Google Scholar 

  11. Hryc, C.F., et al.: Accurate model annotation of a near-atomic resolution cryo-EM map. Proc. Natl. Acad. Sci. 114(12), 3103–3108 (2017). https://doi.org/10.1073/PNAS.1621152114

    Article  Google Scholar 

  12. Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308(5), 1033–1044 (2001). https://doi.org/10.1006/jmbi.2001.4633

    Article  Google Scholar 

  13. Kong, Y., Ma, J.: A structural-informatics approach for mining beta-sheets: locating sheets in intermediate-resolution density maps. J. Mol. Biol. 332(2), 399–413 (2003)

    Article  Google Scholar 

  14. Kong, Y., Zhang, X., Baker, T.S., Ma, J.: A structural-informatics approach for tracing beta-sheets: building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps. J. Mol. Biol. 339(1), 117–130 (2004). https://doi.org/10.1016/j.jmb.2004.03.038

    Article  Google Scholar 

  15. Kostyuchenko, V.A., et al.: Three-dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10(9), 688–693 (2003). https://doi.org/10.1038/nsb970

    Article  Google Scholar 

  16. Lawson, C.L., et al.: EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44(D1), D396–D403 (2016). https://doi.org/10.1093/nar/gkv1126

    Article  Google Scholar 

  17. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph.Tools 8(2), 1–15 (2003). https://doi.org/10.1080/10867651.2003.10487582

    Article  Google Scholar 

  18. Lindert, S., Stewart, P.L., Meiler, J.: Hybrid approaches: applying computational methods in cryo-electron microscopy. Curr. Opin. Struct. Biol. 19(2), 218–225 (2009). https://doi.org/10.1016/j.sbi.2009.02.010

    Article  Google Scholar 

  19. Ludtke, S.J., Chen, D.H., Song, J.L., Chuang, D.T., Chiu, W.: Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 12(7), 1129–1136 (2004). https://doi.org/10.1016/j.str.2004.05.006

    Article  Google Scholar 

  20. Mitra, K., et al.: Structure of the E. Coli protein-conducting channel bound to a translating ribosome. Nature 438(7066), 318–324 (2005). https://doi.org/10.1038/nature04133

    Article  Google Scholar 

  21. Patwardhan, A., et al.: Building bridges between cellular and molecular structural biology. eLife 6 (2017). https://doi.org/10.7554/eLife.25835

  22. Pintilie, G.D., Zhang, J., Goddard, T.D., Chiu, W., Gossard, D.C.: Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170(3), 427–438 (2010). https://doi.org/10.1016/j.jsb.2010.03.007

    Article  Google Scholar 

  23. Raschka, S.: BioPandas: working with molecular structures in pandas dataframes. J. Open Source Softw. 2(14) (2017). https://doi.org/10.21105/joss.00279

  24. Roh, S.H., et al.: The 3.5-Å CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo proton channel. Mol. Cell 69(6), 993.e3–1004.e3 (2018). https://doi.org/10.1016/j.molcel.2018.02.006

    Article  Google Scholar 

  25. Rougier, N.P.: Glumpy. In: EuroScipy (2015)

    Google Scholar 

  26. Terashi, G., Kihara, D.: De novo main-chain modeling with MAINMAST in 2015/2016 EM model challenge. J. Struct. Biol. 204(2), 351–359 (2018). https://doi.org/10.1016/J.JSB.2018.07.013

    Article  Google Scholar 

  27. Terwilliger, T.C., Adams, P.D., Afonine, P.V., Sobolev, O.V.: A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15(11), 905–908 (2018). https://doi.org/10.1038/s41592-018-0173-1

    Article  Google Scholar 

  28. Topf, M., Baker, M.L., John, B., Chiu, W., Sali, A.: Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J. Struct. Biol. 149(2), 191–203 (2005). https://doi.org/10.1016/j.jsb.2004.11.004

    Article  Google Scholar 

  29. Unverdorben, P., et al.: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 111(15), 5544–5549 (2014). https://doi.org/10.1073/pnas.1403409111

    Article  Google Scholar 

  30. van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

  31. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991). https://doi.org/10.1109/34.87344

    Article  Google Scholar 

  32. Volkmann, N., Hanein, D., Ouyang, G., Trybus, K.M., DeRosier, D.J., Lowey, S.: Evidence for cleft closure in actomyosin upon ADP release. Nat. Struct. Biol. 7(12), 1147–1155 (2000). https://doi.org/10.1038/82008

    Article  Google Scholar 

  33. Volkmann, N.: A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138(1–2), 123–129 (2002). https://doi.org/10.1016/S1047-8477(02)00009-6

    Article  Google Scholar 

  34. Van der Walt, S., et al.: Scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  35. Witkin, A.P.: Scale-space filtering. In: Readings in Computer Vision, pp. 329–332. Elsevier (1987). https://doi.org/10.1016/B978-0-08-051581-6.50036-2. https://linkinghub.elsevier.com/retrieve/pii/B9780080515816500362

Download references

Acknowledgements

Funded by the Vicerrrectoría de Investigación y Extensión at Instituto Tecnológico de Costa Rica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Esquivel-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zumbado-Corrales, M., Castillo-Valverde, L., Salas-Bonilla, J., Víquez-Murillo, J., Kihara, D., Esquivel-Rodríguez, J. (2020). Matching of EM Map Segments to Structurally-Relevant Bio-molecular Regions. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics