Skip to main content

New Automatic and Robust Measures to Evaluate Hearing Loss and Tinnitus in Preclinical Models

  • Chapter
  • First Online:
New Therapies to Prevent or Cure Auditory Disorders

Abstract

During this collaboration between CILcare and KeenEye Technologies, a full pipeline has been designed to automatically classify and quantify the number of hair cells in 3D cochlea images. This project introduced many challenges with regard to specific pre- and post-data processing and an adaptive model for 3D object detection. The model has been trained using transfer learning with mini batch images keeping the context information around the different types of cells. This new automatic counting method performed 10 times faster than humans, with on average 3.5 min to analyze one fragment image. The algorithm gave performance metrics of 90% for precision and 70% for sensitivity. While the precision value is good, additional work is needed to increase the overall sensitivity and reduce its variance. In addition, an objective quantification method to detect tinnitus on rats was developed in collaboration between CILcare and Charles Coulomb Laboratory (L2C-BioNanoNMRI team). Tinnitus, a phantom auditory sensation, which occurs in the absence of an external sound stimulus, is generated presumably within the auditory brain. Here we focus on the inferior colliculus (IC), a midbrain structure that integrates auditory information from both ears as well as information from other sensory systems. Some studies reveal neural hyperactivity in the IC after salicylate drug administration. In this study, we present an innovative manganese-enhanced magnetic resonance imaging (MEMRI) analysis method called ∆R2/R2. This quantitative method detects 1H NMR relaxation rate changes in the absence or presence of tinnitus. The ∆R2/R2 method generates relevant data comparable to those obtained with the signal-to-noise ratio (SNR) and signal intensity ratio (SIR) methods when manganese is administered by the transtympanic or intraperitoneal route. A major advantage of the ∆R2/R2 method is that it is automatic, robust, and reveals quantitative markers compared to qualitative methods like SNR and SIR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBN:

Broadband noise

BOLD:

Blood oxygen level dependent

CC:

Cerebral cortex

FDA:

US Food and Drug Administration

fMRI:

Functional magnetic resonance imaging

GPIAS:

GAP inhibition of the acoustic startle reflex

HCs:

Hair cells

IC:

Inferior colliculus

IHC:

Inner hair cells

IP:

Intraperitoneal

MEMRI:

Manganese enhancement magnetic resonance magnetic

MnCl2:

Manganese chloride

NMR:

Nuclear magnetic resonance

OHC:

Outer hair cells

PET:

Positron emission tomography

R2:

NMR relaxation rate

rCBF:

Regional cerebral blood flow

RGB:

Red green blue

r i :

Relaxivity

ROI:

Region of interest

SCs:

Supporting cells

SEM:

Standard error of the mean

SGNs:

Spiral ganglion neurons

SIR:

Signal intensity ratio

SIT:

Salicylate-induced tinnitus

SNR:

Signal-to-noise ratio

T2:

Transversal relaxation time

TT:

Transtympanic

References

  1. Cunningham LL, Tucci DL (2017) Hearing loss in adults. N Engl J Med 377:2465–2473

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilson BS, Tucci DL, Merson MH, O’Donoghue GM (2017) Global hearing health care: new findings and perspectives. Lancet 390:2503–2515

    Article  PubMed  Google Scholar 

  3. Sultana H, Mumtaz N, Dawood T (2018) Type and degree of hearing loss in patients with tinnitus. International Journal of Rehabilitation Sciences (IJRS) 7(01):24–27

    Google Scholar 

  4. Basile CE, Fournier P, Hutchins S, Hebert S (2013) Psychoacoustic assessment to improve tinnitus diagnosis. PLoS One 8:e82995

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stolzberg D, Salvi RJ, Allman BL (2012) Salicylate toxicity model of tinnitus. Front Syst Neurosci 6:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brozoski TJ, Ciobanu L, Bauer CA (2007) Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res 228:168–179

    Article  PubMed  Google Scholar 

  7. Holt AG, Bissig D, Mirza N, Rajah G, Berkowitz B (2010) Evidence of key tinnitus-related brain regions documented by a unique combination of manganese-enhanced MRI and acoustic startle reflex testing. PLoS One 5:e14260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu X, Wadghiri YZ, Sanes DH, Turnbull DH (2005) In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 8:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YC, Li X, Liu L, Wang J, Lu CQ, Yang M, Jiao Y, Zang FC, Radziwon K, Chen GD et al (2015) Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. elife 4:e06576

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harding GW, Bohne BA (2009) Relation of focal hair-cell lesions to noise-exposure parameters from a 4- or a 0.5-kHz octave band of noise. Hear Res 254:54–63

    Article  PubMed  Google Scholar 

  11. Harding GW, Bohne BA, Ahmad M (2002) DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 174:158–171

    Article  PubMed  Google Scholar 

  12. Gauvin DV, Yoder J, Koch A, Zimmermann ZJ, Tapp RL (2017) Down for the count: the critical endpoint in ototoxicity remains the cytocochleogram. J Pharmacol Toxicol Methods 88:123–129

    Article  CAS  PubMed  Google Scholar 

  13. Viberg A, Canlon B (2004) The guide to plotting a cochleogram. Hear Res 197:1–10

    Article  PubMed  Google Scholar 

  14. Neal C, Kennon-McGill S, Freemyer A, Shum A, Staecker H, Durham D (2015) Hair cell counts in a rat model of sound damage: effects of tissue preparation & identification of regions of hair cell loss. Hear Res 328:120–132

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bohne BA (1972) Location of small cochlear lesions by phase contrast microscopy prior to thin sectioning. Laryngoscope 82:1–16

    Article  CAS  PubMed  Google Scholar 

  16. Hardie NA, MacDonald G, Rubel EW (2004) A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy. Brain Res 1000:200–210

    Article  CAS  PubMed  Google Scholar 

  17. Bohne BA, Harding GW (2011) Microscopic anatomy of the mouse inner ear, laboratory manual, 3rd edition. Washington University Press, pp 1–2, St. Louis, MO, USA

    Google Scholar 

  18. Ehret G, Frankenreiter M (1977) Quantitative analysis of cochlear structures in the house mouse in relation to mechanisms of acoustical information processing. J Comp Physiol 122:65–85

    Google Scholar 

  19. Keithley EM, Feldman ML (1982) Hair cell counts in an age-graded series of rat cochleas. Hear Res 8:249–262

    Article  CAS  PubMed  Google Scholar 

  20. Spoendlin H, Brun JP (1974) The block-surface technique for evaluation of cochlear pathology. Arch Otorhinolaryngol 208:137–145

    Article  CAS  PubMed  Google Scholar 

  21. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bohne BA, Kimlinger M, Harding GW (2017) Time course of organ of Corti degeneration after noise exposure. Hear Res 344:158–169

    Article  PubMed  Google Scholar 

  23. Chen GD, Decker B, Krishnan Muthaiah VP, Sheppard A, Salvi R (2014) Prolonged noise exposure-induced auditory threshold shifts in rats. Hear Res 317(1–8):1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takada Y, Takada T, Lee MY, Swiderski DL, Kabara LL, Dolan DF, Raphael Y (2015) Ototoxicity-induced loss of hearing and inner hair cells is attenuated by HSP70 gene transfer. Mol Ther Methods Clin Dev 2:15019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akil O, Lustig LR (2013) Mouse cochlear whole mount immunofluorescence. Bio Protoc 3:e332

    Article  PubMed  Google Scholar 

  26. Kaiming H, Xiangyu Z, Shaoqing R, Jian S (2015). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 770–778

    Google Scholar 

  27. Sinno P, Qiang, Y (2010). A Survey on Transfer Learning. Knowledge and Data Engineering, IEEE Transactions on. 22. 1345 - 1359. doi: 10.1109/TKDE.2009.191

    Google Scholar 

  28. Monro HRS (1951) A stochastic approximation method. Ann Math Stat 22:400–407

    Google Scholar 

  29. Ding D, Jiang H, Chen GD, Longo-Guess C, Muthaiah VP, Tian C, Sheppard A, Salvi R, Johnson KR (2016) N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in gamma-glutamyl transferase 1 deficient mice. Aging (Albany NY) 8:730–750

    Article  CAS  Google Scholar 

  30. Sanz L, Murillo-Cuesta S, Cobo P, Cediel-Algovia R, Contreras J, Rivera T, Varela-Nieto I, Avendano C (2015) Swept-sine noise-induced damage as a hearing loss model for preclinical assays. Front Aging Neurosci 7:7

    PubMed  PubMed Central  Google Scholar 

  31. Lockwood AH, Salvi RJ, Burkard RF (2002) Tinnitus. N Engl J Med 347:904–910

    Article  PubMed  Google Scholar 

  32. Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT (1988) Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci 102:811–822

    Article  CAS  PubMed  Google Scholar 

  33. Boyen K, Baskent D, van Dijk P (2015) The gap detection test: can it be used to diagnose tinnitus? Ear Hear 36:e138–e145

    Article  PubMed  PubMed Central  Google Scholar 

  34. Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195

    Article  PubMed  Google Scholar 

  35. Muca A, Standafer E, Apawu AK, Ahmad F, Ghoddoussi F, Hali M, Warila J, Berkowitz BA, Holt AG (2018) Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity. Brain Struct Funct 223:2343–2360

    Article  PubMed  PubMed Central  Google Scholar 

  36. Galazyuk A, Hebert S (2015) Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front Neurol 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee JW, Park JA, Lee JJ, Bae SJ, Lee SH, Jung JC, Kim MN, Lee J, Woo S, Chang Y (2007) Manganese-enhanced auditory tract-tracing MRI with cochlear injection. Magn Reson Imaging 25:652–656

    Article  CAS  PubMed  Google Scholar 

  38. Pautler RG (2004) In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17:595–601

    Article  CAS  PubMed  Google Scholar 

  39. Cheung SW, Nagarajan SS, Bedenbaugh PH, Schreiner CE, Wang X, Wong A (2001) Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hear Res 156:115–127

    Article  CAS  PubMed  Google Scholar 

  40. Malheiros JM, Paiva FF, Longo BM, Hamani C, Covolan L (2015) Manganese-enhanced MRI: biological applications in neuroscience. Front Neurol 6:161

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schumacher JW, Schneider DM, Woolley SM (2011) Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons. J Neurophysiol 106:500–514

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ter-Mikaelian M, Sanes DH, Semple MN (2007) Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. J Neurosci 27:6091–6102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin SU, Lee JJ, Hong KS, Han M, Park JW, Lee HJ, Lee S, Lee KY, Shin KM, Cho JH et al (2013) Intratympanic manganese administration revealed sound intensity and frequency dependent functional activity in rat auditory pathway. Magn Reson Imaging 31:1143–1149

    Article  CAS  PubMed  Google Scholar 

  44. Lee HJ, Yoo SJ, Lee S, Song HJ, Huh MI, Jin SU, Lee KY, Lee J, Cho JH, Chang Y (2012) Functional activity mapping of rat auditory pathway after intratympanic manganese administration. Neuroimage 60:1046–1054

    Article  PubMed  Google Scholar 

  45. Paul AK, Lobarinas E, Simmons R, Wack D, Luisi JC, Spernyak J, Mazurchuk R, Abdel-Nabi H, Salvi R (2009) Metabolic imaging of rat brain during pharmacologically-induced tinnitus. Neuroimage 44:312–318

    Article  CAS  PubMed  Google Scholar 

  46. Rancz EA, Moya J, Drawitsch F, Brichta AM, Canals S, Margrie TW (2015) Widespread vestibular activation of the rodent cortex. J Neurosci 35:5926–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Silva AC, Bock NA (2008) Manganese-enhanced MRI: an exceptional tool in translational neuroimaging. Schizophr Bull 34:595–604

    Article  PubMed  PubMed Central  Google Scholar 

  48. Groschel M, Gotze R, Muller S, Ernst A, Basta D (2016) Central nervous activity upon systemic salicylate application in animals with kanamycin-induced hearing loss—a manganese-enhanced MRI (MEMRI) study. PLoS One 11:e0153386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jung DJ, Han M, Jin SU, Lee SH, Park I, Cho HJ, Kwon TJ, Lee HJ, Cho JH, Lee KY et al (2014) Functional mapping of the auditory tract in rodent tinnitus model using manganese-enhanced magnetic resonance imaging. Neuroimage 100:642–649

    Article  PubMed  Google Scholar 

  50. Liu Y, Li X, Ma C, Liu J, Lu H (2005) Salicylate blocks L-type calcium channels in rat inferior colliculus neurons. Hear Res 205:271–276

    Article  CAS  PubMed  Google Scholar 

  51. Hu SS, Mei L, Chen JY, Huang ZW, Wu H (2014) Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat. Eur J Histochem 58:2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spivak M, Weston J, Bottou L, Kall L, Noble WS (2009) Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets. J Proteome Res 8:3737–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bauer CA, Brozoski TJ, Rojas R, Boley J, Wyder M (1999) Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg 121:457–462

    Article  CAS  PubMed  Google Scholar 

  54. Caravan P, Farrar CT, Frullano L, Uppal R (2009) Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging 4:89–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pucheu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laboulais, A. et al. (2020). New Automatic and Robust Measures to Evaluate Hearing Loss and Tinnitus in Preclinical Models. In: Pucheu, S., Radziwon, K., Salvi, R. (eds) New Therapies to Prevent or Cure Auditory Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-40413-0_7

Download citation

Publish with us

Policies and ethics