Abstract
The effect of magnetic fields (MFs) on mammalian cells in vitro has been studied to clarify in greater details potential influence on biological systems. In spite of the numerous and valuable experiments, the MF molecular mechanisms that affect cells still remain unclear. Thus, the aim of the study was to evaluate the cellular response of L929 fibroblast cell line to a rotating magnetic field (RMF) for 8-h exposure incubation period. We conclude that the exposure of L929 fibroblasts to the rotating magnetic field (RMF) in tested magnetic flux density range alerted the cellular dehydrogenases metabolism in a dose-dependent manner, with the highest values in dehydrogenases activity for cells incubated at 10.06 mT and lowest incubated at 1.23 mT of RMF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bouschet, T., Henley, J.M.: Calcium as an extracellular signalling molecule: perspectives on the calcium sensing receptor in the brain. C. R. Biol. 328, 691–700 (2005)
Brushart, M.T., Hoffman, P.N., Royall, R.M., Murinson, B.B., Witzell, C., Gordon, T.: Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J. Neursci. 22, 6631–6638 (2002)
Cordova-Fraga, T., Espinoza-Garcia, A.A., Barbosa-Sabanero, G., Pérez-Olivas, H.A., Rosas-Padilla, E.F., Matrinez-Espinoza, J.C., Bernal Alvardo, J.J.: Increasing survival study of kidney HEK-293T cells in magnetic field vortices and nano-fluid. IJEIT 4, 222–225 (2014)
Fathi, E., Farahzadi, R., Rahbarghazi, R., Kafil, H.S., Yolmeh, R.: Rat adipose-derived mesenchymal stem cells aging reduction by zinc sulphate under extremely low frequency electromagnetic field exposure in associated with increased telomerase reverse transcriptase gene expression. Vet. Res. Forum 8, 89–96 (2017)
Feng, J., Sheng, H., Zhu, C., Jiang, H., Ma, S.: Effect of adjuvant magnetic fields in radiotherapy on non-small lung cancer cells in vitro. Bio. Med. Res. Int. 10, 657259–657265 (2013)
Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., Riess, H.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 4, 33–56 (2002)
Hristov, J., Perez, H.V.: Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng. 3, 3–20 (2011)
Huang, H.M., Lee, S.Y., Yao, W.C., Lin, C.T., Yeh, C.Y.: Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin. Orthop. Relat. Res. 447, 201–208 (2006)
Iannitti, T., Fistetto, G., Rottigni, V., Palmieri, B.: Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly. Clin. Interv. Aging 8, 1289–1293 (2013)
Ikehata, M., Iwasaka, M., Miyakoshi, J., Ueno, S., Koana, T.: Effects of intense magnetic field on sedimentation pattern and gene expression profile in budding yeast. J. Appl. Phys. 93, 6724–6726 (2002)
Iwasaka, M., Ikehata, M., Miyakoshi, J., Ueno, S.: Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry 65, 59–68 (2004)
Jedrzejczak-Silicka, M., Urbas, K., Mijowska, E., Rakoczy, R.: The covalent and non-covalent of graphene oxide with hydroxycampotothecin in hyperthermia for its anticancer activity. J. Alloys Compd. 709, 112–124 (2017)
Kim, H.S., Park, B.J., Jang, H.J., Ipper, N.S., Kim, S.H., Kim, Y.J., Jeon, S.H., Lee, K.S., Lee, S.K., Kim, N., Ju, Y.J., Gimm, Y.M., Kim, Y.W.: Continuous exposure to 60 Hz magnetic fields induces duration- and dose-dependent apoptosis of testicular germ cells. Bioelectromagnetics 35, 100–107 (2014)
Kim, Y.W., Kim, H.S., Lee, J.S., Kim, Y.J., Lee, S.K., Seo, J.N., Jung, K.C., Kim, N., Gimm, Y.M.: Effects of 60 Hz 14 mT magnetic field on the apoptosis of testicular germ cell in mice. Bioelectromagnetics 30, 66–72 (2009)
Lee, J.S., Ahn, S.S., Jung, K.C., Kim, Y.W., Lee, S.K.: Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian J. Androl. 6, 29–34 (2004)
Liu, D., Wang, L., Wang, Z., Cuschieri, A.: Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields. NanoLett. 12, 5117–5121 (2012)
Mahdi, A., Gowland, P.A., Mansfield, P., Coupland, R.E., Lloyd, R.G.: The effects of static 3.0 T and 0.5 T magnetic fields and the echo-planar imaging experiment at 0.5 T on E. coli. Br. J. Radiol. 67, 983–987 (1994)
Manni, V., Lisi, A., Pozzi, D., Rieti, S., Serafino, A., Giuliani, L., Grimaldi, S.: Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keranocytes. Bioelectromagnetics 23, 298–305 (2002)
Marędziak, M., Marycz, K., Śmieszek, A., Lewandowski, D., Toker, N.Y.: The influence of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. Vitro Cell. Dev. Biol. Animal. 50, 562–571 (2014)
Masiuk, M., Rakoczy, R., Masiuk, S., Kordas, M.: The expression and intracellular distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fields. Int. J. Rad. Biol. 84, 752–760 (2008)
Nakahara, T., Yaguchi, H., Yoshida, M., Miyakoshi, J.: Effects of exposure of CHO-K1 Cells to a 10-T static magnetic field. Radiology 224, 817–822 (2002)
Phillips, J.L., Haggren, W., Thomas, W.J., Ishida-Jones, T., Adey, W.: Magnetic field-induced changes in specific gene transcription. Biochim. Biophys. Acta 1132, 140–144 (1992)
Potenza, L., Ubaldi, L., De Sanctis, R., De Bellis, R., Cucchiarini, L., Dacha, M.: Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat. Res. Fund. Mol. M. 561, 53–62 (2004)
Pozzi, D., Grimaldi, S., Ledda, M., De Carlo, F., Modesti, A., Scarpa, S., Foletti, A., Lisi, A.: Effect of 50 Hz magnetic field exposure on neuroblastoma morphology. Int. J. Integr. Biol. 1, 12–17 (2007)
Rosen, A.D.: Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39, 163–173 (2003)
Rusovan, A., Kanje, M.: Magnetic field stimulate peripheral nerve regeneration in hypophysectiomized rats. Neruoreport 3, 1039–1041 (1992)
Scharenberg, A.M., Humphries, L.A., Rawlings, D.J.: Calcium signalling and cell-fate choice in B cells. Nat. Rev. Immunol. 7, 778–789 (2007)
Shupak, N.M.: Therapeutic uses of pulsed magnetic-filed exposure: a review. Radio Sci. Bul. 307, 9–32 (2003)
Tenuzzo, B., Chionna, A., Panzarini, E., Lanubile, R., Tarantino, P., Di Jeso, B., Dwikat, M., Dini, L.: Biological effects of 6 mT static magnetic fields on induction of apoptosis: a comparative study in different cell types. Bioelectromagnetics 27, 560–577 (2006)
Tenuzzo, B., Dwikat, M., Dini, L.: Static magnetic field selects undifferentiated myelomonocytes from low-glutamine concentration stimulated U937 cells. Tissue Cell 40, 177–184 (2008)
Teodori, L., Grabarek, J., Smolewski, P., Ghibelli, L., Bergamaschi, A., De Nicola, M., Darzynkiewicz, Z.: Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry 49, 113–118 (2002)
Testorf, M.F., Oberg, P.A., Iwasaka, M., Ueno, S.: Melanophore aggregation in strong magnetic fields. Bioelectromagnetics 23, 444–449 (2002)
Walleczek, J.: Electromagnetic field effects on cells of the immune system: the role of calcium signalling. FASEB J. 6, 3177–3185 (1992)
Acknowledgments
This study was supported by the National Science Centre within OPUS program (UMO-2011/03/B/ST5/03239).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jędrzejczak-Silicka, M., Mijowska, E., Szymańska, K., Rakoczy, R. (2020). Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian Cells. In: Ochowiak, M., Woziwodzki, S., Mitkowski, P., Doligalski, M. (eds) Practical Aspects of Chemical Engineering. PAIC 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-39867-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-39867-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39866-8
Online ISBN: 978-3-030-39867-5
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)