Skip to main content

Optic Disc and Fovea Localisation in Ultra-widefield Scanning Laser Ophthalmoscope Images Captured in Multiple Modalities

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

We propose a convolutional neural network for localising the centres of the optic disc (OD) and fovea in ultra-wide field of view scanning laser ophthalmoscope (UWFoV-SLO) images of the retina. Images captured in both reflectance and autofluorescence (AF) modes, and central pole and eyesteered gazes, were used. The method achieved an OD localisation accuracy of 99.4% within one OD radius, and fovea localisation accuracy of 99.1% within one OD radius on a test set comprising of 1790 images. The performance of fovea localisation in AF images was comparable to the variation between human annotators at this task. The laterality of the image (whether the image is of the left or right eye) was inferred from the OD and fovea coordinates with an accuracy of 99.9%.

P. R. Wakeford—Supported by the EPSRC Centre for Doctoral Training in Applied Photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Bander, B., Al-Nuaimy, W., Al-Taee, M.A., Al-Ataby, A., Zheng, Y.: Automatic feature learning method for detection of retinal landmarks. In: Proceedings - 2016 9th International Conference on Developments in eSystems Engineering, pp. 13–18 (2016). https://doi.org/10.1109/DeSE.2016.4

  2. Al-Bander, B., Al-Nuaimy, W., Williams, B.M., Zheng, Y.: Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control 40, 91–101 (2018). https://doi.org/10.1016/j.bspc.2017.09.008

    Article  Google Scholar 

  3. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Optic disc detection using fine tuned convolutional neural networks. In: Proceedings - 12th International Conference on Signal Image Technology and Internet-Based Systems, pp. 69–75 (2016). https://doi.org/10.1109/SITIS.2016.20

  4. Croft, D.E., van Hemert, J., Wykoff, C.C., Clifton, D., Verhoek, M., Fleming, A., Brown, D.M.: Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014)

    Article  Google Scholar 

  5. Faust, O., Acharya, R., Ng, E.Y., Ng, K.H., Suri, J.S.: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 36(1), 145–157 (2012). https://doi.org/10.1007/s10916-010-9454-7

    Article  Google Scholar 

  6. Fleming, A.D., Goatman, K.A., Philip, S., Olson, J.A., Sharp, P.F.: Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys. Med. Biol. 52(2), 331–345 (2007). https://doi.org/10.1088/0031-9155/52/2/002

    Article  Google Scholar 

  7. Foracchia, M., Grisan, E., Ruggeri, A.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imaging 23(10), 1189–1195 (2004). https://doi.org/10.1109/TMI.2004.829331

    Article  Google Scholar 

  8. Haleem, M.S., Han, L., van Hemert, J., Li, B.: Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput. Med. Imaging Graph. 37(7–8), 581–596 (2013). https://doi.org/10.1016/j.compmedimag.2013.09.005

    Article  Google Scholar 

  9. Holz, F.G., Spaide, R.F., Schmitz-Valckenberg, S., Bird, A.C. (eds.): Atlas of Fundus Autofluorscence Imaging. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71994-6

    Book  Google Scholar 

  10. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958 (2003). https://doi.org/10.1109/TMI.2003.815900

    Article  Google Scholar 

  11. Jang, Y., Son, J., Park, K.H., Park, S.J., Jung, K.H.: Laterality classification of fundus images using interpretable deep neural network. J. Digit. Imaging 1–6 (2018). https://doi.org/10.1007/s10278-018-0099-2

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.L.: Adam: A Method for Stochastic Optimization. CoRR abs/1412.6, 1–15 (2014). https://doi.org/10.1016/j.nano.2011.03.005. http://arxiv.org/abs/1412.6980

    Article  Google Scholar 

  13. Marin, D., Gegundez-Arias, M.E., Suero, A., Bravo, J.M.: Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput. Methods Programs Biomed. 118(2), 173–185 (2015). https://doi.org/10.1016/j.cmpb.2014.11.003

    Article  Google Scholar 

  14. Meng, X., Xi, X., Yang, L., Zhang, G., Yin, Y., Chen, X.: Fast and effective optic disk localization based on convolutional neural network. Neurocomputing 312, 285–295 (2018). https://doi.org/10.1016/j.neucom.2018.05.114

    Article  Google Scholar 

  15. Meyer, M.I., Galdran, A., Mendonça, A.M., Campilho, A.: A pixel-wise distance regression approach for joint retinal optical disc and fovea detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 39–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_5

    Chapter  Google Scholar 

  16. Meyer, M.I., Galdran, A., Mendonca, A.M., Campilho, A.: Joint Retinal Optical Disc and Fovea Detection (2018). https://github.com/minesmeyer/od-fovea-regression

  17. Mitra, A., Banerjee, P.S., Roy, S., Roy, S., Setua, S.K.: The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Comput. Methods Programs Biomed. 165, 25–35 (2018). https://doi.org/10.1016/j.cmpb.2018.08.003

    Article  Google Scholar 

  18. Niemeijer, M., Abràmoff, M.D., van Ginnekena, B.: Fast detection of the optic disc and fovea in color fundus photographs. Med. Image Anal. 13(6), 859–870 (2009). https://doi.org/10.1016/j.media.2009.08.003

    Article  Google Scholar 

  19. Niu, D., Xu, P., Wan, C., Cheng, J., Liu, J.: Automatic localization of optic disc based on deep learning in fundus images. In: 2017 IEEE 2nd International Conference on Signal and Image Processing, pp. 208–212 (2017). https://doi.org/10.1109/SIPROCESS.2017.8124534

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Roy, P.K., Chakravorty, R., Sedai, S., Mahapatra, D., Garnavi, R.: Automatic eye type detection in retinal fundus image using fusion of transfer learning and anatomical features. In: 2016 International Conference on Digital Image Computing: Techniques and Applications, pp. 538–544 (2016). https://doi.org/10.1109/DICTA.2016.7797012

  22. Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999). https://doi.org/10.1136/bjo.83.8.902

    Article  Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout : a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Tan, N.M., et al.: Classification of left and right eye retinal images. In: Proceedings of SPIE, vol. 7624 (2010). https://doi.org/10.1117/12.844638. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.844638

  25. Tangelder, G.J., Reus, N.J., Lemij, H.G.: Estimating the clinical usefulness of optic disc biometry for detecting glaucomatous change over time. Eye 20(7), 755–763 (2006). https://doi.org/10.1038/sj.eye.6701993

    Article  Google Scholar 

  26. Tobin, K.W., Chaum, E., Govindasamy, V.P., Karnowski, T.P.: Detection of anatomic structures in human retinal imagery. IEEE Trans. Med. Imaging 26(12), 1729–1739 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Wakeford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wakeford, P.R. et al. (2020). Optic Disc and Fovea Localisation in Ultra-widefield Scanning Laser Ophthalmoscope Images Captured in Multiple Modalities. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics