Skip to main content

Post-Translational Modifications in Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

  • 953 Accesses

Abstract

Newly synthesized proteins are subject to several post-translational modifications (PTMs). These PTMs can create diverse proteins from a single gene and are important for the function of certain proteins in a given situation. Recent advances in mass spectrometry (MS)-based proteomics have enabled the global detection of PTMs of bacterial proteins. In Corynebacterium and other actinobacteria, common PTMs (e.g., phosphorylation and acetylation) as well as uncommon PTMs (e.g., pupylation, mycoloylation, and mycothiolation) have been detected. In this chapter, the features of six representative PTMs found in Corynebacterium glutamicum, phosphorylation, acylation, pupylation, mycoloylation, mycothiolation, and glycosylation, and their roles in protein regulation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almawi AW, Matthews LA, Guarné A (2017) FHA domains: phosphopeptide binding and beyond. Prog Biophys Mol Biol 127:105–110

    Article  CAS  PubMed  Google Scholar 

  • Bendt AK, Burkovski A, Schaffer S et al (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Bibb LA, Kunkle CA, Schmitt MP (2007) The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun 75:2421–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birhanu AG, Yimer SA, Holm-Hansen C et al (2017) Nε- and O-Acetylation in Mycobacterium tuberculosis lineage 7 and lineage 4 strains: proteins involved in bioenergetics, virulence, and antimicrobial resistance are acetylated. J Proteome Res 16:4045–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21:932–939

    Article  CAS  PubMed  Google Scholar 

  • Bott M, Brocker M (2012) Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 94:1131–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocker M, Bott M (2006) Evidence for activator and repressor functions of the response regulator MtrA from Corynebacterium glutamicum. FEMS Microbiol Lett 264:205–212

    Article  CAS  PubMed  Google Scholar 

  • Brocker M, Schaffer S, Mack C, Bott M (2009) Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol 191:3869–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocker M, Mack C, Bott M (2011) Target genes, consensus binding site, and role of phosphorylation for the response regulator MtrA of Corynebacterium glutamicum. J Bacteriol 193:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Burgos JM, Schmitt MP (2016) The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae. J Bacteriol 198:2419–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns KE, Liu W-T, Boshoff HIM et al (2009) Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carabetta VJ, Cristea IM (2017) Regulation, function, and detection of protein acetylation in bacteria. J Bacteriol 199:e00107–e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carel C, Marcoux J, Réat V et al (2017) Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane. Proc Natl Acad Sci U S A 114:4231–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sprung R, Tang Y et al (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6:812–819

    Article  CAS  PubMed  Google Scholar 

  • Chi BK, Busche T, Van Laer K et al (2014) Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress. Antioxid Redox Signal 20:589–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chubukov V, Uhr M, Le Chat L et al (2013) Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 9:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12:327–340

    Article  CAS  PubMed  Google Scholar 

  • Colak G, Xie Z, Zhu AY et al (2013) Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol Cell Proteomics 12:3509–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Peng C, Montellier E et al (2014) Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 10:365–370

    Article  CAS  PubMed  Google Scholar 

  • Darwin KH (2009) Prokaryotic ubiquitin-like protein (pup), proteasomes and pathogenesis. Nat Rev Microbiol 7:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delley CL, Müller AU, Ziemski M, Weber-Ban E (2017) Prokaryotic ubiquitin-like protein and its ligase/deligase enyzmes. J Mol Biol 429:3486–3499

    Article  CAS  PubMed  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher J, Aké FMD, Derkaoui M et al (2014) The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78:231–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du J, Zhou Y, Su X et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler J, Koomey M (2017) Sweet new roles for protein glycosylation in prokaryotes. Trends Microbiol 25:662–672

    Article  CAS  PubMed  Google Scholar 

  • Fiuza M, Canova MJ, Patin D et al (2008a) The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum. J Biol Chem 283:36553–36563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiuza M, Canova MJ, Zanella-Cléon I et al (2008b) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112

    Article  CAS  PubMed  Google Scholar 

  • Fiuza M, Letek M, Leiba J et al (2010) Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum. J Biol Chem 285:29387–29397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Kim J, Darwin AJ (2016) The phage shock protein response. Annu Rev Microbiol 70:83–101

    Article  CAS  PubMed  Google Scholar 

  • Frunzke J, Gätgens C, Brocker M, Bott M (2011) Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol 193:1212–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Stock AM (2010) Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol 13:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grangeasse C, Cozzone A, Deutccher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32:86–94

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wang C, Han Y et al (2016) Identification of lysine acetylation in Mycobacterium abscessus using LC–MS/MS after immunoprecipitation. J Proteome Res 15:2567–2578

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Barsch A, Niehaus K et al (2004) The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Arch Microbiol 182:299–312

    Article  CAS  PubMed  Google Scholar 

  • Hentchel KL, Escalante-Semerena JC (2015) Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol Mol Biol Rev 79:321–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Hentschel E, Mack C, Gätgens C et al (2014) Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum. Mol Microbiol 92:1326–1342

    Article  CAS  PubMed  Google Scholar 

  • Heyer A, Gatgens C, Hentschel E et al (2012) The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology 158:3020–3031

    Article  CAS  PubMed  Google Scholar 

  • Huc E, Meniche X, Benz R et al (2010) O-Mycoloylated proteins from Corynebacterium. J Biol Chem 285:21908–21912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huc E, de Sousa-D’Auria C, de la Sierra-Gallay IL et al (2013) Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales. J Bacteriol 195:4121–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26:676–687

    Article  CAS  PubMed  Google Scholar 

  • Imber M, Pietrzyk-Brzezinska AJ, Antelmann H (2019) Redox regulation by reversible protein S-thiolation in gram-positive bacteria. Redox Biol 20:130–145

    Article  CAS  PubMed  Google Scholar 

  • Ishigaki Y, Akanuma G, Yoshida M et al (2017) Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus. J Proteome 155:63–72

    Article  CAS  Google Scholar 

  • Ishige T, Krause M, Bott M et al (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa H, Huc-Claustre E, Reddad T et al (2017) Click-chemistry approach to study mycoloylated proteins: evidence for PorB and PorC porins mycoloylation in Corynebacterium glutamicum. PLoS One 12:e0171955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang H, Zhang X, Chen X et al (2017) Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev 118:919–988

    Article  CAS  Google Scholar 

  • Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka M, Hashimoto KI, Yoshida M et al (2006) Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol 42:471–476

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E et al (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Keppel M, Piepenbreier H, Gätgens C et al (2019) Toxic but tasty – temporal dynamics and network architecture of heme-responsive two-component signaling in Corynebacterium glutamicum. Mol Microbiol 111:1367–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Fukuda H, Hirasawa T et al (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:911–920

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hirasawa T, Saito M et al (2011) Investigation of phosphorylation status of OdhI protein during penicillin- and tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl Microbiol Biotechnol 91:143–151

    Article  CAS  PubMed  Google Scholar 

  • Kleine B, Chattopadhyay A, Polen T et al (2017) The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum. Mol Microbiol 106:719–741

    Article  CAS  PubMed  Google Scholar 

  • Kocan M, Schaffer S, Ishige T et al (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komine-Abe A, Nagano-Shoji M, Kubo S et al (2017) Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum. Biosci Biotechnol Biochem 81:2130–2138

    Article  CAS  PubMed  Google Scholar 

  • Kosono S, Tamura M, Suzuki S et al (2015) Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. PLoS One 10:e0131169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Küberl A, Fränzel B, Eggeling L et al (2014) Pupylated proteins in Corynebacterium glutamicum revealed by MudPIT analysis. Proteomics 14:1531–1542

    Article  PubMed  CAS  Google Scholar 

  • Küberl A, Polen T, Bott M (2016) The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin. Proc Natl Acad Sci U S A 113:4806–4811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhn ML, Zemaitaitis B, Hu LI et al (2014) Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One 9:e94816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanéelle M-A, Tropis M, Daffé M (2013) Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol 97:9923–9930

    Article  PubMed  CAS  Google Scholar 

  • Liao G, Xie L, Li X et al (2014) Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling. J Proteome 106:260–269

    Article  CAS  Google Scholar 

  • Liu F, Yang M, Wang X et al (2014) Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis. Mol Cell Proteomics 13:3352–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loi VV, Rossius M, Antelmann H (2015) Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 6:1748–1722

    Article  Google Scholar 

  • Mahne M, Tauch A, Pühler A, Kalinowski JR (2006) The Corynebacterium glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic protein-O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins. FEMS Microbiol Lett 259:226–233

    Article  CAS  PubMed  Google Scholar 

  • Mijakovic I, Macek B (2011) Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol Rev 36:877–892

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Nagano-Shoji M, Kubo S et al (2016) Altered acetylation and succinylation profiles in Corynebacterium glutamicumin response to conditions inducing glutamate overproduction. Microbiology 5:152–173

    CAS  Google Scholar 

  • Möker N, Brocker M, Schaffer S et al (2004) Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54:420–438

    Article  PubMed  CAS  Google Scholar 

  • Möker N, Reihlen P, Krämer R, Morbach S (2007) Osmosensing properties of the histidine protein kinase MtrB from Corynebacterium glutamicum. J Biol Chem 282:27666–27677

    Article  PubMed  Google Scholar 

  • Moon M-W, Park S-Y, Choi S-K, Lee J-K (2006) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12:43–50

    Article  CAS  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Young DI, Young M (1998) A bacterial cytokine. Proc Natl Acad Sci U S A 95:8916–8921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Keitany G, Li Y et al (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1208–1211

    Article  CAS  Google Scholar 

  • Muñoz-Dorado J, Inouye S, lnouye M (1991) A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67:995–1006

    Article  PubMed  Google Scholar 

  • Nagano-Shoji M, Hamamoto Y, Mizuno Y et al (2017) Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. Mol Microbiol 104:677–689

    Article  CAS  PubMed  Google Scholar 

  • Newton GL, Buchmeier N, Fahey RC (2008) Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72:471–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niebisch A, Kabus A, Schultz C et al (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  CAS  PubMed  Google Scholar 

  • Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778

    Article  CAS  PubMed  Google Scholar 

  • Nott TJ, Kelly G, Stach L et al (2009) An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal 2:ra12

    Article  PubMed  Google Scholar 

  • Pearce MJ, Mintseris J, Ferreyra J et al (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Lu Z, Xie Z et al (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10:M111.012658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira SFF, Goss L, Dworkin J (2011) Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev 75:192–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez J, Castaneda-Garcia A, Jenke-Kodama H, Muller R, Munoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci 105(41):15950–15955

    Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF et al (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Raasch K, Bocola M, Labahn J et al (2014) Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: mutants and a model. J Biotechnol 191:99–105

    Article  CAS  PubMed  Google Scholar 

  • Rath P, Demange P, Saurel O et al (2011) Functional expression of the PorAH channel from Corynebacterium glutamicum in cell-free expression systems. J Biol Chem 286:32525–32532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabari BR, Zhang D, Allis CD, Zhao Y (2016) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadoul K, Wang J, Diagouraga B, Khochbin S (2011) The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotechnol 2011:970382

    Article  PubMed  CAS  Google Scholar 

  • Schaaf S, Bott M (2007) Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol 189:5002–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelder S, Zaade D, Litsanov B et al (2011) The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS One 6:e22143–e22113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A et al (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu H, Tanaka H, Nakato A et al (2003) Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 25:291–298

    Article  CAS  PubMed  Google Scholar 

  • Shirai T, Nakato A, Izutani N et al (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69

    Article  CAS  PubMed  Google Scholar 

  • Shirai T, Fujimura K, Furusawa C et al (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Factories 6:19

    Article  CAS  Google Scholar 

  • Si M, Xu Y, Wang T et al (2015) Functional characterization of a mycothiol peroxidase in Corynebacterium glutamicum that uses both mycoredoxin and thioredoxin reducing systems in the response to oxidative stress. Biochem J 469:45–57

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Arora G, Virmani R et al (2015) Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase. J Biol Chem 290:26218–26234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stancik IA, Šestak MS, Ji B et al (2018) Serine/threonine protein kinases from bacteria, archaea and eukarya share a common evolutionary origin deeply rooted in the tree of life. J Mol Biol 430:27–32

    Article  CAS  PubMed  Google Scholar 

  • Striebel F, Imkamp F, Özcelik D, Weber-Ban E (2014) Pupylation as a signal for proteasomal degradation in bacteria. BBA - Mol Cell Res 1843:103–113

    CAS  Google Scholar 

  • Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Peng C, Anderson KA et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur M, Chakraborti PK (2006) GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem 281:40107–40113

    Article  CAS  PubMed  Google Scholar 

  • Van Drisse CM, Escalante-Semerena JC (2019) Protein acetylation in bacteria. Annu Rev Microbiol 73:5.1–5.22

    Google Scholar 

  • Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288:29036–29045

    Google Scholar 

  • Wagner GR, Bhatt DP, O’Connell TM et al (2017) A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab 25:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert BT, Iesmantavicius V, Wagner SA et al (2013a) Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 51:265–272

    Article  CAS  PubMed  Google Scholar 

  • Weinert BT, Schölz C, Wagner SA et al (2013b) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4:842–851

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Wang X, Zeng J et al (2015) Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. Int J Biochem Cell Biol 59:193–202

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Di Z, Chung D et al (2016) Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol Cell 62:194–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats C, Finn RD, Bateman A (2002) The PASTA domain: a β-lactam-binding domain. Trends Biol Sci 27(9):438–440

    Article  CAS  Google Scholar 

  • Yu BJ, Kim JA, Moon JH et al (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18:1529–1536

    CAS  PubMed  Google Scholar 

  • Zhang J, Sprung R, Pei J et al (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Tan M, Xie Z et al (2010) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428:3752–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saori Kosono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosono, S. (2020). Post-Translational Modifications in Corynebacterium glutamicum . In: Inui, M., Toyoda, K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-39267-3_6

Download citation

Publish with us

Policies and ethics