Skip to main content

Sigma Factors of RNA Polymerase in Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Corynebacterium glutamicum is an important biotechnological organism as well as a model organism for other corynebacteria including pathogenic species. C. glutamicum also seems suitable as a model organism for corynebacteria in respect of studies of regulatory networks controlled by sigma factors of RNA polymerase, because its sigma factors represent a common subset, which was found in most Corynebacterium species. The C. glutamicum genome encodes seven σ factors: A primary σA, a primary-like σB and five σ factors of the extracytoplasmic function (ECF) group (σC, σD, σE, σH and σM) that are involved in various stress responses. Activities of σD, σE and σH are controlled by the cognate anti-sigma factors.

Activities of ECF sigma factors in response to heat, cold, cell surface and oxidative stresses, DNA damage, growth phases, nutritional limitations and chemostresses caused by various harmful substances often overlap. Most of the consensus sequences of different promoter classes recognized by individual sigma factors have been defined. C. glutamicum sigma factors σA and σB initiate transcription from nearly identical promoters and their recognition specificity probably depends largely on physiological conditions. Comparison of consensus sequences of promoters recognized by ECF sigma factors indicates that they are mutually similar to various extent and recognition specificities of these sigma factors may also overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J (2017) Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. J Biotechnol 257:99–109

    Article  CAS  PubMed  Google Scholar 

  • Barreiro C, Gonzalez-Lavado E, Pátek M, Martin JF (2004) Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrin F, Mazzabo LC, Anoosheh S, Palu G, Gaudreau L, Manganelli R, Provvedi R (2019) Assessing the role of Rv1222 (RseA) as an anti-sigma factor of the Mycobacterium tuberculosis extracytoplasmic sigma factor SigE. Sci Rep 9:4513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burr T, Mitchell J, Kolb A, Minchin S, Busby S (2000) DNA sequence elements located immediately upstream of the −10 hexamer in Escherichia coli promoters: a systematic study. Nucleic Acids Res 28:1864–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busche T, Šilar R, Pičmanova M, Pátek M, Kalinowski J (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13:445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang A, Smollett KL, Gopaul KK, Chan BH, Davis EO (2012) Mycobacterium tuberculosis H37Rv sigC is expressed from two promoters but is not auto-regulatory. Tuberculosis 92:48–55

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y (2016) Global transcriptomic analysis of the response of Corynebacterium glutamicum to vanillin. PLoS One 11:e0164955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Pan J, Yang X, Xiao H, Zhang Y, Si M, Shen X, Wang Y (2017) Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid. Arch Microbiol 199:325–334

    Article  CAS  PubMed  Google Scholar 

  • Denyer SP (1995) Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegr 36:221–225

    Article  Google Scholar 

  • Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M (2017) Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express 7:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M (2019) Overlap of promoter recognition specificity of stress response sigma factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Front Microbiol 9:3287

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H (2008) Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74:5146–5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engels S, Schweitzer JE, Ludwig C, Bott M, Schäffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol Microbiol 52:285–302

    Article  CAS  PubMed  Google Scholar 

  • Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S (2005) The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591

    Article  CAS  PubMed  Google Scholar 

  • Fang FC (2005) Sigma cascades in prokaryotic regulatory networks. Proc Natl Acad Sci USA 102:4933–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaballa A, Guariglia-Oropeza V, Durr F, Butcher BG, Chen AY, Chandrangsu P, Helmann JD (2018) Modulation of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. Nucleic Acids Res 46:134–145

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt H, Meniche X, Tropis M, Krämer R, Daffé M, Morbach S (2007) The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology 153:1424–1434

    Article  CAS  PubMed  Google Scholar 

  • Gourse RL, Ross W, Gaal T (2000) UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 37:687–695

    Article  CAS  PubMed  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  CAS  PubMed  Google Scholar 

  • Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J (2002) The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol Lett 216:77–84

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD (2016) Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 30:122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2008) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    Article  PubMed  CAS  Google Scholar 

  • Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K (2007) Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation. J Bacteriol 189:5582–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS (2005) Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem Biophys Res Commun 331:1542–1547

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH (2012) Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 85:326–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KY, Park JK, Park S (2016) In Streptomyces coelicolor SigR, methionine at the −35 element interacting region 4 confers the −31′-adenine base selectivity. Biochem Biophys Res Commun 470:257–262

    Google Scholar 

  • Larisch C, Nakunst D, Huser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Fang C, Zhuang N, Wang T, Zhang Y (2019) Structural basis for transcription initiation by bacterial ECF sigma factors. Nat Commun 10:1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lisser S, Margalit H (1993) Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21:1507–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189:4696–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesvera J, Pátek M, Hochmannová J, Abrhámová Z, Becvárová V, Jelínkova M, Vohradský J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179(5):1525–1532

    Google Scholar 

  • Pacheco LG, Castro TL, Carvalho RD, Moraes PM, Dorella FA, Carvalho NB, Slade SE, Scrivens JH, Feelisch M, Meyer R, Miyoshi A, Oliveira SC, Dowson CG, Azevedo V (2012) A role for sigma factor σE in Corynebacterium pseudotuberculosis resistance to nitric oxide/peroxide stress. Front Microbiol 3:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget MS (2015) Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomol Ther 5:1245–1265

    CAS  Google Scholar 

  • Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ (2001) Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the σR regulon. Mol Microbiol 42:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS (2008) Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti σ factor CseE. Microbiology 154:915–923

    Article  CAS  PubMed  Google Scholar 

  • Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–113

    Article  PubMed  CAS  Google Scholar 

  • Pátek M, Eikmanns BJ, Pátek J, Sahm H (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

    Article  PubMed  Google Scholar 

  • Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J (2013) Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14:888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raman S, Song T, Puyang X, Bardarov S, Jacobs WR Jr, Husson RN (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183:6119–6125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R (2006) The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JC, D’Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, Rocha AA, Lopes DO, Dorella FA, Pacheco LG, Costa MP, Turk MZ, Seyffert N, Moraes PM, Soares SC, Almeida SS, Castro TL, Abreu VA, Trost E, Baumbach J, Tauch A, Schneider MP, McCulloch J, Cerdeira LT, Ramos RT, Zerlotini A, Dominitini A, Resende DM, Coser EM, Oliveira LM, Pedrosa AL, Vieira CU, Guimaraes CT, Bartholomeu DC, Oliveira DM, Santos FR, Rabelo EM, Lobo FP, Franco GR, Costa AF, Castro IM, Dias SR, Ferro JA, Ortega JM, Paiva LV, Goulart LR, Almeida JF, Ferro MI, Carneiro NP, Falcao PR, Grynberg P, Teixeira SM, Brommonschenkel S, Oliveira SC, Meyer R, Moore RJ, Miyoshi A, Oliveira GC, Azevedo V (2011) Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 6:e18551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR (2014) Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol 98:2617–3623

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva P, Misra R, Tyagi AK, Singh Y (2010) The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 277:605–626

    Article  CAS  PubMed  Google Scholar 

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    Article  PubMed  CAS  Google Scholar 

  • Šilar R, Holátko J, Rucká L, Rapoport A, Dostálová H, Kadeřabková P, Nešvera J, Pátek M (2016) Use of in vitro transcription system for analysis of Corynebacterium glutamicum promoters recognized by two sigma factors. Curr Microbiol 73:401–408

    Article  PubMed  CAS  Google Scholar 

  • Silberbach M, Hüser A, Kalinowski J, Pühler A, Walter B, Krämer R, Burkovski A (2005) DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 119:357–367

    Article  CAS  PubMed  Google Scholar 

  • Sklar JG, Makinoshima H, Schneider JS, Glickman MS (2010) M. tuberculosis intramembrane protease Rip1 controls transcription through three anti-sigma factor substrates. Mol Microbiol 77:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song T, Dove SL, Lee KH, Husson RN (2003) RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol Microbiol 50:949–959

    Article  CAS  PubMed  Google Scholar 

  • Song T, Song SE, Raman S, Anaya M, Husson RN (2008) Critical role of a single position in the −35 element for promoter recognition by Mycobacterium tuberculosis SigE and SigH. J Bacteriol 190:2227–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 6:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF (2017) Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol 17:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyoda K, Inui M (2016a) Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:45–60

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Inui M (2016b) The extracytoplasmic function sigma factor σC regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 100:486–509

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Inui M (2018) Extracytoplasmic function sigma factor σD confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mol Microbiol 107:312–329

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Teramoto H, Yukawa H, Inui M (2015) Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J Bacteriol 197:483–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vašicová P, Pátek M, Nešvera J, Sahm H, Eikmanns B (1999) Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181:6188–6191

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J, Tauch A (2018) Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics 19:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Liu D, Mao Z, Mao Y, Ma H, Chen T, Zhao X, Wang Z (2018) Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum. Biotechnol Lett 40:819–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 17-06991S from the Czech Science Foundation, Mobility Grant DAAD-18-11 from Czech Academy of Sciences (CAS) and Deutscher Akademischer. Austauschdienst and Institutional Research Project RVO61388971 from the Institute of Microbiology of the CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pátek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pátek, M., Dostálová, H., Nešvera, J. (2020). Sigma Factors of RNA Polymerase in Corynebacterium glutamicum . In: Inui, M., Toyoda, K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-39267-3_4

Download citation

Publish with us

Policies and ethics