Skip to main content

Hormonal Effects in Reproductive Technology with Focus on Diminished Ovarian Reserve

  • Chapter
  • First Online:
Hormonal Pathology of the Uterus

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1242))

Abstract

Modern use of reproductive technologies has revolutionized the treatment of infertile couples. Strategies to improve ovarian function in cases of diminished ovarian reserve are perhaps the least understood area in this field and will be the chief focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugh MV, Lipshultz L. Male factor infertility: evaluation and management. Med Clin North Am. 2004;88(2):367–85.

    Article  PubMed  Google Scholar 

  2. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7(10):1342–6.

    Article  CAS  PubMed  Google Scholar 

  3. Iliodromiti S, Nelson SM. Biomarkers of ovarian reserve. Biomark Med. 2013;7(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  4. Coelho Neto MA, Ludwin A, Borrell A, Benacerraf B, Dewailly D, da Silva Costa F, Condous G, Alcazar JL, Jokubkiene L, Guerriero S, Van den Bosch T, Martins WP. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  5. Hendriks DJ, Kwee J, Mol BW, te Velde ER, Broekmans FJ. Ultrasonography as a tool for the prediction of outcome in IVF patients: a comparative meta-analysis of ovarian volume and antral follicle count. Fertil Steril. 2007;87(4):764–75.

    Article  PubMed  Google Scholar 

  6. Gibreel A, Maheshwari A, Bhattacharya S, Johnson NP. Ultrasound tests of ovarian reserve; a systematic review of accuracy in predicting fertility outcomes. Hum Fertil (Camb). 2009;12(2):95–106.

    Article  Google Scholar 

  7. Broer SL, Dolleman M, Opmeer BC, Fauser BC, Mol BW, Broekmans FJ. AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum Reprod Update. 2011;17(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  8. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril. 1989;51(4):651–4.

    Article  CAS  PubMed  Google Scholar 

  9. Toner JP. The significance of elevated FSH for reproductive function. Baillieres Clin Obstet Gynaecol. 1993;7(2):283–95.

    Article  CAS  PubMed  Google Scholar 

  10. Toner JP, Philput CB, Jones GS, Muasher SJ. Basal follicle-stimulating hormone level is a better predictor of in vitro fertilization performance than age. Fertil Steril. 1991;55(4):784–91.

    Article  CAS  PubMed  Google Scholar 

  11. Ling N, DePaolo LV, Bicsak TA, Shimasaki S. Novel ovarian regulatory peptides: inhibin, activin, and follistatin. Clin Obstet Gynecol. 1990;33(3):690–702.

    Article  CAS  PubMed  Google Scholar 

  12. Kligman I, Rosenwaks Z. Differentiating clinical profiles: predicting good responders, poor responders, and hyperresponders. Fertil Steril. 2001;76(6):1185–90.

    Article  CAS  PubMed  Google Scholar 

  13. Gingold JA, Lee JA, Whitehouse MC, Rodriguez-Purata J, Sandler B, Grunfeld L, Mukherjee T, Copperman AB. Maximum basal FSH predicts reproductive outcome better than cycle-specific basal FSH levels: waiting for a “better” month conveys limited retrieval benefits. Reprod Biol Endocrinol. 2015;13:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lass A, Gerrard A, Abusheikha N, Akagbosu F, Brinsden P. IVF performance of women who have fluctuating early follicular FSH levels. J Assist Reprod Genet. 2000;17(10):566–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barad DH, Weghofer A, Gleicher N. Age-specific levels for basal follicle-stimulating hormone assessment of ovarian function. Obstet Gynecol. 2007b;109(6):1404–10.

    Article  CAS  PubMed  Google Scholar 

  16. Fang T, Su Z, Wang L, Yuan P, Li R, Ouyang N, Zheng L, Wang W. Predictive value of age-specific FSH levels for IVF-ET outcome in women with normal ovarian function. Reprod Biol Endocrinol. 2015;13:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fasouliotis SJ, Simon A, Laufer N. Evaluation and treatment of low responders in assisted reproductive technology: a challenge to meet. J Assist Reprod Genet. 2000;17(7):357–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gleicher N, Barad D. “Ovarian age-based” stimulation of young women with diminished ovarian reserve results in excellent pregnancy rates with in vitro fertilization. Fertil Steril. 2006;86(6):1621–5.

    Article  PubMed  Google Scholar 

  19. Toner JP, Flood JT. Fertility after the age of 40. Obstet Gynecol Clin N Am. 1993;20(2):261–72.

    CAS  Google Scholar 

  20. Kushnir VA, Safdie M, Darmon SK, Albertini DF, Barad DH, Gleicher N. Age-specific IVF outcomes in infertile women with baseline FSH levels >/=20 mIU/mL. Reprod Sci. 2018;25(6):893–8.

    Article  CAS  PubMed  Google Scholar 

  21. Barad DH, Weghofer A, Gleicher N. Comparing anti-Mullerian hormone (AMH) and follicle-stimulating hormone (FSH) as predictors of ovarian function. Fertil Steril. 2009;91(4 Suppl):1553–5.

    Article  CAS  PubMed  Google Scholar 

  22. Barad DH, Weghofer A, Gleicher N. Utility of age-specific serum anti-Mullerian hormone concentrations. Reprod Biomed Online. 2011;22(3):284–91.

    Article  CAS  PubMed  Google Scholar 

  23. Gleicher N, Darmon SK, Kushnir VA, Weghofer A, Wang Q, Zhang L, Albertini DF, Barad DH. How FSH and AMH reflect probabilities of oocyte numbers in poor prognosis patients with small oocyte yields. Endocrine. 2016a;54(2):476–83.

    Article  CAS  PubMed  Google Scholar 

  24. Gleicher N, Weghofer A, Barad DH. Anti-Mullerian hormone (AMH) defines, independent of age, low versus good live-birth chances in women with severely diminished ovarian reserve. Fertil Steril. 2010;94(7):2824–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kushnir VA, Seifer DB, Barad DH, Sen A, Gleicher N. Potential therapeutic applications of human anti-Mullerian hormone (AMH) analogues in reproductive medicine. J Assist Reprod Genet. 2017;34(9):1105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barad DH, Kim A, Kubba H, Weghofer A, Gleicher N. Does hormonal contraception prior to in vitro fertilization (IVF) negatively affect oocyte yields? A pilot study. Reprod Biol Endocrinol. 2013;11:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weghofer A, Dietrich W, Ortner I, Bieglmayer C, Barad D, Gleicher N. Anti-Mullerian hormone levels decline under hormonal suppression: a prospective analysis in fertile women after delivery. Reprod Biol Endocrinol. 2011;9:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hiedar Z, Bakhtiyari M, Foroozanfard F, Mirzamoradi M. Age-specific reference values and cut-off points for anti-mullerian hormone in infertile women following a long agonist treatment protocol for IVF. J Endocrinol Investig. 2018;41(7):773–80.

    Article  CAS  Google Scholar 

  29. Seifer DB, Baker VL, Leader B. Age-specific serum anti-Mullerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil Steril. 2011;95(2):747–50.

    Article  CAS  PubMed  Google Scholar 

  30. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    Article  CAS  PubMed  Google Scholar 

  31. Fleming R, Coutts JR. Induction of multiple follicular development for IVF. Br Med Bull. 1990;46(3):596–615.

    Article  CAS  PubMed  Google Scholar 

  32. Fauser BC, Devroey P, Macklon NS. Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet. 2005;365(9473):1807–16.

    Article  PubMed  Google Scholar 

  33. Hamoda H, Sunkara S, Khalaf Y, Braude P, El-Toukhy T. Outcome of fresh IVF/ICSI cycles in relation to the number of oocytes collected: a review of 4,701 treatment cycles. Hum Reprod. 2010;25.

    Google Scholar 

  34. Magnusson Å, Källen K, Thurin-Kjellberg A, Bergh C. The number of oocytes retrieved during IVF: a balance between efficacy and safety. Hum Reprod. 2017;33(1):58–64.

    Article  Google Scholar 

  35. van der Gaast MH, Eijkemans MJ, van der Net JB, de Boer EJ, Burger CW, van Leeuwen FE, Fauser BC, Macklon NS. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod Biomed Online. 2006;13(4):476–80.

    Article  PubMed  Google Scholar 

  36. Stanger JD, Yovich JL. Follicle recruitment determines IVF productivity rate via the number of embryos frozen and subsequent transfers. Reprod Biomed Online. 2013;27(3):286–96.

    Article  PubMed  Google Scholar 

  37. Arce JC, Andersen AN, Fernandez-Sanchez M, Visnova H, Bosch E, Garcia-Velasco JA, Barri P, de Sutter P, Klein BM, Fauser BC. Ovarian response to recombinant human follicle-stimulating hormone: a randomized, antimullerian hormone-stratified, dose-response trial in women undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2014;102(6):1633–40.e1635.

    Article  CAS  PubMed  Google Scholar 

  38. Lekamge DN, Lane M, Gilchrist RB, Tremellen KP. Increased gonadotrophin stimulation does not improve IVF outcomes in patients with predicted poor ovarian reserve. J Assist Reprod Genet. 2008;25(11–12):515–21.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Out HJ, Braat DD, Lintsen BM, Gurgan T, Bukulmez O, Gokmen O, Keles G, Caballero P, Gonzalez JM, Fabregues F, Balasch J, Roulier R. Increasing the daily dose of recombinant follicle stimulating hormone (Puregon) does not compensate for the age-related decline in retrievable oocytes after ovarian stimulation. Hum Reprod. 2000;15(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  40. Rustamov O, Wilkinson J, La Marca A, Fitzgerald C, Roberts S. How much variation in oocyte yield after controlled ovarian stimulation can be explained? A multilevel modelling study. Human Reproduction Open. 2017;2017:hox018.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kawwass JF, Hipp HS, Session DR, Kissin DM, Jamieson DJ, A. R. T. S. S. G. National. Severity of diminished ovarian reserve and chance of success with assisted reproductive technology. J Reprod Med. 2017;62(3–4):153–60.

    PubMed  Google Scholar 

  42. Lensen SF, Wilkinson J, Leijdekkers JA, La Marca A, Mol BWJ, Marjoribanks J, Torrance H, Broekmans FJ. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst Rev. 2018;2:CD012693.

    PubMed  Google Scholar 

  43. Almog B, Shehata F, Shalom-Paz E, Tan SL, Tulandi T. Age-related normogram for antral follicle count: McGill reference guide. Fertil Steril. 2011;95(2):663–6.

    Article  PubMed  Google Scholar 

  44. Holte J, Brodin T, Berglund L, Hadziosmanovic N, Olovsson M, Bergh T. Antral follicle counts are strongly associated with live-birth rates after assisted reproduction, with superior treatment outcome in women with polycystic ovaries. Fertil Steril. 2011;96(3):594–9.

    Article  PubMed  Google Scholar 

  45. Hsu A, Arny M, Knee AB, Bell C, Cook E, Novak AL, Grow DR. Antral follicle count in clinical practice: analyzing clinical relevance. Fertil Steril. 2011;95(2):474–9.

    Article  PubMed  Google Scholar 

  46. Muasher SJ, Abdallah RT, Hubayter ZR. Optimal stimulation protocols for in vitro fertilization. Fertil Steril. 2006;86(2):267–73.

    Article  PubMed  Google Scholar 

  47. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab. 1986;15(2):213–28.

    Article  CAS  PubMed  Google Scholar 

  48. Endoh A, Kristiansen SB, Casson PR, Buster JE, Hornsby PJ. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab. 1996;81(10):3558–65.

    CAS  PubMed  Google Scholar 

  49. Hornsby PJ. Biosynthesis of DHEAS by the human adrenal cortex and its age-related decline. Ann N Y Acad Sci. 1995;774:29–46.

    Article  CAS  PubMed  Google Scholar 

  50. Hornsby PJ. Aging of the human adrenal cortex. Sci Aging Knowl Environ. 2004;2004(35):re6.

    Article  Google Scholar 

  51. McNatty KP, Makris A, De Grazia C, Osathanondh R, Ryan KJ. The production of progesterone, androgens and oestrogens by human granulosa cells in vitro and in vivo. J Steroid Biochem. 1979;11(1C):775–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ryan KJ. Granulosa-thecal cell interaction in ovarian steroidogenesis. J Steroid Biochem. 1979;11(1C):799–800.

    Article  CAS  PubMed  Google Scholar 

  53. Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. J Endocrinol. 2014;222(3):R141–51.

    Article  CAS  PubMed  Google Scholar 

  54. Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol Endocrinol. 2010;24(7):1393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, Barad D, Gleicher N, Hammes SR. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111(8):3008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sen A, Prizant H, Hammes SR. Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids. 2011;76(9):822–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Barad DH, Gleicher N. Increased oocyte production after treatment with dehydroepiandrosterone. Fertil Steril. 2005;84(3):756.

    Article  PubMed  Google Scholar 

  58. Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod. 2000;15(10):2129–32.

    Article  CAS  PubMed  Google Scholar 

  59. Barad D, Brill H, Gleicher N. Update on the use of dehydroepiandrosterone supplementation among women with diminished ovarian function. J Assist Reprod Genet. 2007a;24(12):629–34.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Barad D, Gleicher N. Effect of dehydroepiandrosterone on oocyte and embryo yields, embryo grade and cell number in IVF. Hum Reprod. 2006;21(11):2845–9.

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Hu L, Fan L, Wang F. Efficacy of dehydroepiandrosterone (DHEA) supplementation for in vitro fertilization and embryo transfer cycles: a systematic review and meta-analysis. Gynecol Endocrinol. 2018;34(3):178–83.

    Article  CAS  PubMed  Google Scholar 

  62. Nagels HE, Rishworth JR, Siristatidis CS, Kroon B. Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. Cochrane Database Syst Rev. 2015;11:CD009749.

    Google Scholar 

  63. Narkwichean A, Maalouf W, Baumgarten M, Polanski L, Raine-Fenning N, Campbell B, Jayaprakasan K. Efficacy of dehydroepiandrosterone (DHEA) to overcome the effect of ovarian ageing (DITTO): a proof of principle double blinded randomized placebo controlled trial. Eur J Obstet Gynecol Reprod Biol. 2017;218:39–48.

    Article  CAS  PubMed  Google Scholar 

  64. Griesinger G, Venetis CA, Tarlatzis B, Kolibianakis EM. To pill or not to pill in GnRH-antagonist cycles: the answer is in the data already! Reprod Biomed Online. 2015;31(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  65. Deb S, Campbell BK, Pincott-Allen C, Clewes JS, Cumberpatch G, Raine-Fenning NJ. Quantifying effect of combined oral contraceptive pill on functional ovarian reserve as measured by serum anti-Mullerian hormone and small antral follicle count using three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2012;39(5):574–80.

    Article  CAS  PubMed  Google Scholar 

  66. Gleicher N, Kim A, Weghofer A, Shohat-Tal A, Lazzaroni E, Lee HJ, Barad DH. Starting and resulting testosterone levels after androgen supplementation determine at all ages in vitro fertilization (IVF) pregnancy rates in women with diminished ovarian reserve (DOR). J Assist Reprod Genet. 2013;30(1):49–62.

    Article  PubMed  Google Scholar 

  67. Abir R, Garor R, Felz C, Nitke S, Krissi H, Fisch B. Growth hormone and its receptor in human ovaries from fetuses and adults. Fertil Steril. 2008;90(4 Suppl):1333–9.

    Article  CAS  PubMed  Google Scholar 

  68. Buyalos RP. Insulin-like growth factors: clinical experience in ovarian function. Am J Med. 1995;98(1A):55S–66S.

    Article  CAS  PubMed  Google Scholar 

  69. Menezo YJ, el Mouatassim S, Chavrier M, Servy EJ, Nicolet B. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor. Zygote. 2003;11(4):293–7.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou P, Baumgarten SC, Wu Y, Bennett J, Winston N, Hirshfeld-Cytron J, Stocco C. IGF-I signaling is essential for FSH stimulation of AKT and steroidogenic genes in granulosa cells. Mol Endocrinol. 2013;27(3):511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A. Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol. 1996;10(7):903–18.

    CAS  PubMed  Google Scholar 

  72. Zhou J, Kumar TR, Matzuk MM, Bondy C. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol Endocrinol. 1997;11(13):1924–33.

    Article  CAS  PubMed  Google Scholar 

  73. Chun SY, Billig H, Tilly JL, Furuta I, Tsafriri A, Hsueh AJ. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology. 1994;135(5):1845–53.

    Article  CAS  PubMed  Google Scholar 

  74. Adashi EY, Resnick CE, D'Ercole AJ, Svoboda ME, van Wyk JJ. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function∗. Endocr Rev. 1985;6(3):400–20.

    Article  CAS  PubMed  Google Scholar 

  75. Oosterhuis GJ, Vermes I, Lambalk CB, Michgelsen HW, Schoemaker J. Insulin-like growth factor (IGF)-I and IGF binding protein-3 concentrations in fluid from human stimulated follicles. Hum Reprod. 1998;13(2):285–9.

    Article  CAS  PubMed  Google Scholar 

  76. Regan SLP, Knight PG, Yovich JL, Arfuso F, Dharmarajan A. Growth hormone during in vitro fertilization in older women modulates the density of receptors in granulosa cells, with improved pregnancy outcomes. Fertil Steril. 2018;110(7):1298–310.

    Article  CAS  PubMed  Google Scholar 

  77. Bergh C, Hillensjo T, Wikland M, Nilsson L, Borg G, Hamberger L. Adjuvant growth hormone treatment during in vitro fertilization: a randomized, placebo-controlled study. Fertil Steril. 1994;62(1):113–20.

    Article  CAS  PubMed  Google Scholar 

  78. Hazout A, Junca A, Menezo Y, Demouzon J, Cohen-Bacrie P. Effect of growth hormone on oocyte competence in patients with multiple IVF failures. Reprod Biomed Online. 2009;18(5):664–70.

    Article  CAS  PubMed  Google Scholar 

  79. Kucuk T, Kozinoglu H, Kaba A. Growth hormone co-treatment within a GnRH agonist long protocol in patients with poor ovarian response: a prospective, randomized, clinical trial. J Assist Reprod Genet. 2008;25(4):123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Owen EJ, West C, Mason BA, Jacobs HS. Co-treatment with growth hormone of sub-optimal responders in IVF-ET. Hum Reprod. 1991;6(4):524–8.

    Article  CAS  PubMed  Google Scholar 

  81. Suikkari A, MacLachlan V, Koistinen R, Seppala M, Healy D. Double-blind placebo controlled study: human biosynthetic growth hormone for assisted reproductive technology. Fertil Steril. 1996;65(4):800–5.

    Article  CAS  PubMed  Google Scholar 

  82. Tesarik J, Hazout A, Mendoza C. Improvement of delivery and live birth rates after ICSI in women aged >40 years by ovarian co-stimulation with growth hormone. Hum Reprod. 2005;20(9):2536–41.

    Article  PubMed  Google Scholar 

  83. Zhuang GL, Wong SX, Zhou CQ. [The effect of co-administration of low dosage growth hormone and gonadotropin for ovarian hyperstimulation in vitro fertilization and embryo transfer]. Zhonghua Fu Chan Ke Za Zhi. 1994;29(8):471–74, 510.

    Google Scholar 

  84. Dakhly DMR, Bassiouny YA, Bayoumi YA, Hassan MA, Gouda HM, Hassan AA. The addition of growth hormone adjuvant therapy to the long down regulation protocol in poor responders undergoing in vitro fertilization: randomized control trial. Eur J Obstet Gynecol Reprod Biol. 2018;228:161–5.

    Article  CAS  PubMed  Google Scholar 

  85. Norman RJ, Alvino H, Hull LM, Mol BW, Hart RJ, Kelly TL, Rombauts L, investigators L. Human growth hormone for poor responders: a randomized placebo-controlled trial provides no evidence for improved live birth rate. Reprod Biomed Online. 2019;38(6):908–15.

    Article  CAS  PubMed  Google Scholar 

  86. Casson PR, Santoro N, Elkind-Hirsch K, Carson SA, Hornsby PJ, Abraham G, Buster JE. Postmenopausal dehydroepiandrosterone administration increases free insulin-like growth factor-I and decreases high-density lipoprotein: a six-month trial. Fertil Steril. 1998;70(1):107–10.

    Article  CAS  PubMed  Google Scholar 

  87. Yoshimura Y, Ando M, Nagamatsu S, Iwashita M, Adachi T, Sueoka K, Miyazaki T, Kuji N, Tanaka M. Effects of insulin-like growth factor-I on follicle growth, oocyte maturation, and ovarian steroidogenesis and plasminogen activator activity in the rabbit. Biol Reprod. 1996a;55(1):152–60.

    Article  CAS  PubMed  Google Scholar 

  88. Yoshimura Y, Aoki N, Sueoka K, Miyazaki T, Kuji N, Tanaka M, Kobayashi T. Interactions between insulin-like growth factor-I (IGF-I) and the renin-angiotensin system in follicular growth and ovulation. J Clin Invest. 1996b;98(2):308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pantos K, Nitsos N, Kokkali G, Vaxevanoglou T, Markomichali C, Pantou A, Grammatis M, Lazaros L, Sfakianoudis K. Ovarian rejuvenation and folliculogenesis reactivation in peri-menopausal women after autologous platelet-rich plasma treatment ESHRE 32nd Annual Meeting. Helsinki, Finland. Hum Reprod: i301; 2016.

    Google Scholar 

  90. Fabi S, Sundaram H. The potential of topical and injectable growth factors and cytokines for skin rejuvenation. Facial Plast Surg. 2014;30(02):157–71.

    Article  CAS  PubMed  Google Scholar 

  91. Xie X, Zhang C, Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Res Ther. 2014;16(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA. Platelet genomics and proteomics in human health and disease. J Clin Invest. 2005;115:3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McRedmond JP, Park SD, Reilly DF, Coppinger JA, Maguire PB, Shields DC, Fitzgerald DJ. Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics. 2004;3:133.

    Article  CAS  PubMed  Google Scholar 

  94. Watson SP, Bahou WF, Fitzgerald D, Ouwehand W, Rao AK, Leavitt AD. ISTH platelet physiology subcommittee: mapping the platelet proteome: a report of the ISTH platelet physiology subcommittee. J Thromb Haemost. 2005;3:2098.

    Article  CAS  PubMed  Google Scholar 

  95. Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep, 2019;39(6).

    Google Scholar 

  96. Farimani M, Heshmati S, Poorolajal J, Bahmanzadeh M. A report on three live births in women with poor ovarian response following intra-ovarian injection of platelet-rich plasma (PRP). Mol Biol Rep. 2019;46(2):1611–6.

    Article  CAS  PubMed  Google Scholar 

  97. Hosseini L, Shirazi A, Naderi MM, Shams-Esfandabadi N, Borjian Boroujeni S, Sarvari A, Sadeghnia S, Behzadi B, Akhondi MM. Platelet-rich plasma promotes the development of isolated human primordial and primary follicles to the preantral stage. Reprod Biomed Online. 2017;35(4):343–50.

    Article  CAS  PubMed  Google Scholar 

  98. Sills ES, Rickers NS, Li X, Palermo GD. First data on in vitro fertilization and blastocyst formation after intraovarian injection of calcium gluconate-activated autologous platelet rich plasma. Gynecol Endocrinol. 2018;34(9):756–60.

    Article  CAS  PubMed  Google Scholar 

  99. Pantos K, Simopoulou M, Pantou A, Rapani A, Tsioulou P, Nitsos N, Syrkos S, Pappas A, Koutsilieris M, Sfakianoudis K. A case series on natural conceptions resulting in ongoing pregnancies in menopausal and prematurely menopausal women following platelet-rich plasma treatment. Cell Transplant. 2019;28(9–10):1333–40. https://doi.org/10.1177/0963689719859539.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wu YG, Barad DH, Kushnir VA, Wang Q, Zhang L, Darmon SK, Albertini DF, Gleicher N. With low ovarian reserve, highly individualized egg retrieval (HIER) improves IVF results by avoiding premature luteinization. J Ovarian Res. 2018;11(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Navot D, Bergh PA, Williams MA, Garrisi GJ, Guzman I, Sandler B, Grunfeld L. Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet. 1991;337(8754):1375–7.

    Article  CAS  PubMed  Google Scholar 

  102. Wu YG, Barad DH, Kushnir VA, Lazzaroni E, Wang Q, Albertini DF, Gleicher N. Aging-related premature luteinization of granulosa cells is avoided by early oocyte retrieval. J Endocrinol. 2015;226(3):167–80.

    Article  CAS  PubMed  Google Scholar 

  103. Da Broi MG, Giorgi VSI, Wang F, Keefe DL, Albertini D, Navarro PA. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J Assist Reprod Genet. 2018;35(5):735–51.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Herlands RL, Schultz RM. Regulation of mouse oocyte growth: probable nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth. J Exp Zool. 1984;229(2):317–25.

    Article  CAS  PubMed  Google Scholar 

  105. Viveiros MM, De La Fuente R. Chapter 11—regulation of mammalian oocyte maturation. In: Leung PCK, Adashi EY, editors. The ovary. 3rd ed: Academic Press; 2019. p. 165–80.

    Google Scholar 

  106. Seifer DB, Charland C, Berlinsky D, Penzias AS, Haning RV Jr, Naftolin F, Barker BE. Proliferative index of human luteinized granulosa cells varies as a function of ovarian reserve. Am J Obstet Gynecol. 1993;169(6):1531–5.

    Article  CAS  PubMed  Google Scholar 

  107. Seifer DB, Gardiner AC, Ferreira KA, Peluso JJ. Apoptosis as a function of ovarian reserve in women undergoing in vitro fertilization. Fertil Steril. 1996;66(4):593–8.

    Article  CAS  PubMed  Google Scholar 

  108. Barad DH. Infertility surgery by laparotomy. Curr Opin Obstet Gynecol. 1991;3(3):398–403.

    Article  CAS  PubMed  Google Scholar 

  109. Teoh TG, Kondaveeti U, Darling MR. The management of female infertility by tubal microsurgical reconstruction: a ten year review. Ir J Med Sci. 1995;164(3):212–4.

    Article  CAS  PubMed  Google Scholar 

  110. Farquhar CM. Ectopic pregnancy. Lancet. 2005;366(9485):583–91.

    Article  PubMed  Google Scholar 

  111. Johnson N, van Voorst S, Sowter MC, Strandell A, Mol BW. Surgical treatment for tubal disease in women due to undergo in vitro fertilisation. Cochrane Database Syst Rev. 2010;(1):CD002125.

    Google Scholar 

  112. Tsiami A, Chaimani A, Mavridis D, Siskou M, Assimakopoulos E, Sotiriadis A. Surgical treatment for hydrosalpinx prior to in-vitro fertilization embryo transfer: a network meta-analysis. Ultrasound Obstet Gynecol. 2016;48(4):434–45.

    Article  CAS  PubMed  Google Scholar 

  113. Pereira N, Pryor KP, Voskuilen-Gonzalez A, Lekovich JP, Elias RT, Spandorfer SD, Rosenwaks Z. Ovarian response and in vitro fertilization outcomes after salpingectomy: does salpingectomy indication matter? J Minim Invasive Gynecol. 2017;24(3):446–54.e441.

    Article  PubMed  Google Scholar 

  114. Li Z, Sullivan EA, Chapman M, Farquhar C, Wang YA. Risk of ectopic pregnancy lowest with transfer of single frozen blastocyst. Hum Reprod. 2015;30(9):2048–54.

    Article  CAS  PubMed  Google Scholar 

  115. Santos-Ribeiro S, Tournaye H, Polyzos NP. Trends in ectopic pregnancy rates following assisted reproductive technologies in the UK: a 12-year nationwide analysis including 160 000 pregnancies. Hum Reprod. 2016;31(2):393–402.

    PubMed  Google Scholar 

  116. Xu B, Zhang Q, Zhao J, Wang Y, Xu D, Li Y. Pregnancy outcome of in vitro fertilization after Essure and laparoscopic management of hydrosalpinx: a systematic review and meta-analysis. Fertil Steril. 2017;108(1):84–95.e85.

    Article  PubMed  Google Scholar 

  117. Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, Wininger D, Gibbons W, Conaghan J, Stern JE. Standardization of grading embryo morphology. J Assist Reprod Genet. 2010;27(8):437–9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Glujovsky D, Farquhar C, Quinteiro Retamar AM, Alvarez Sedo CR, Blake D. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2016;6:CD002118.

    Google Scholar 

  119. Kuliev A, Verlinsky Y. Place of preimplantation diagnosis in genetic practice. Am J Med Genet A. 2005;134A(1):105–10.

    Article  PubMed  Google Scholar 

  120. Márquez C, Sandalinas M, Bahçe M, Al ikani M, Munné S. Chromosome abnormalities in 1255 cleavage-stage human embryos. Reprod Biomed Online. 2000;1(1):17–26.

    Article  PubMed  Google Scholar 

  121. Munné S, Alikani M, Tomkin G, Grifo J, Cohen J. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities∗∗Presented at the 50th Annual Meeting of The American Fertility Society, San Antonio, Texas, November 4 to 9, 1994, where it was awarded the prize paper of the Society for Assisted Reproductive Technology. Fertil Steril. 1995;64(2):382–91.

    Article  PubMed  Google Scholar 

  122. Northrop LE, Treff NR, Levy B, Scott RT Jr. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gleicher N, Kushnir VA, Barad DH. Preimplantation genetic screening (PGS) still in search of a clinical application: a systematic review. Reprod Biol Endocrinol. 2014;12(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hardarson T, Hanson C, Lundin K, Hillensjo T, Nilsson L, Stevic J, Reismer E, Borg K, Wikland M, Bergh C. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod. 2008;23(12):2806–12.

    Article  CAS  PubMed  Google Scholar 

  125. Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17(4):454–66.

    Article  CAS  PubMed  Google Scholar 

  126. de Boer KA, Catt JW, Jansen RP, Leigh D, McArthur S. Moving to blastocyst biopsy for preimplantation genetic diagnosis and single embryo transfer at Sydney IVF. Fertil Steril. 2004;82(2):295–8.

    Article  PubMed  Google Scholar 

  127. McArthur SJ, Leigh D, Marshall JT, de Boer KA, Jansen RP. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84(6):1628–36.

    Article  PubMed  Google Scholar 

  128. Marin D, Zimmerman R, Tao X, Zhan Y, Scott RT Jr, Treff NR. Validation of a targeted next generation sequencing-based comprehensive chromosome screening platform for detection of triploidy in human blastocysts. Reprod Biomed Online. 2018;36(4):388–95.

    Article  CAS  PubMed  Google Scholar 

  129. Scott RT Jr, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97(4):870–5.

    Article  PubMed  Google Scholar 

  130. Treff NR, Forman EJ, Scott RT Jr. Next-generation sequencing for preimplantation genetic diagnosis. Fertil Steril. 2013;99(6):e17–8.

    Article  CAS  PubMed  Google Scholar 

  131. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63.. e651

    Article  PubMed  Google Scholar 

  132. Gleicher N, Vidali A, Braverman J, Kushnir VA, Barad DH, Hudson C, Wu YG, Wang Q, Zhang L, Albertini DF, P. G. S. C. S. G. International. Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod Biol Endocrinol. 2016b;14(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90.

    Article  PubMed  Google Scholar 

  134. Patrizio P, Shoham G, Shoham Z, Leong M, Barad DH, Gleicher N. Worldwide live births following the transfer of chromosomally “abnormal” embryos after PGT/A: results of a worldwide web-based survey. J Assist Reprod Genet. 2019;36:1599.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tiegs AW, Hodes-Wertz B, McCulloh DH, Munne S, Grifo JA. Discrepant diagnosis rate of array comparative genomic hybridization in thawed euploid blastocysts. J Assist Reprod Genet. 2016;33(7):893–7.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, Voet T, Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Santos MA, Teklenburg G, Macklon NS, Van Opstal D, Schuring-Blom GH, Krijtenburg PJ, de Vreeden-Elbertse J, Fauser BC, Baart EB. The fate of the mosaic embryo: chromosomal constitution and development of day 4, 5 and 8 human embryos. Hum Reprod. 2010;25(8):1916–26.

    Article  PubMed  Google Scholar 

  138. Takahashi S, Patrizio P. The impact of mosaic embryos on procreative liberty and procreative responsibility: time to put innovative technology on “pause”. Curr Stem Cell Rep. 2019;5:125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Barad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barad, D. (2020). Hormonal Effects in Reproductive Technology with Focus on Diminished Ovarian Reserve. In: Deligdisch-Schor, L., Mareş Miceli, A. (eds) Hormonal Pathology of the Uterus . Advances in Experimental Medicine and Biology, vol 1242. Springer, Cham. https://doi.org/10.1007/978-3-030-38474-6_2

Download citation

Publish with us

Policies and ethics