Skip to main content

Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 25))

Abstract

Rhizosphere harbors potential microbiomes which play a pivotal role in nutrient cycling, enhancing soil fertility, maintaining plant health and productivity. Specific microbiomes that are assembled near roots are considered to be some of the most complex ecosystems on the Earth. Heterogeneous microbial communities of rhizospheric microbiomes considerably vary by soil type, land use pattern, plant species, and host genotype. It is demonstrated that root exudates act as substrates and signaling molecules which are required for establishing plant–rhizobacterial interactions. The present chapter focused on the rhizosphere microbiomes of different agricultural crops, their functions, and possible biotechnological applications for increasing crop production in a sustainable manner. Further, the plant growth-promoting mechanisms of rhizobacteria were highlighted. Although much work has been done on the biocontrol characteristics of rhizospheric bacteria, it has to be considered that soil type, plant species, and the pathogen affect altogether influence the biocontrol efficiency of strain applied against a soil-borne pathogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Fattah DA, Ewedab WE, Zayed MS, Hassaneina MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Ann Agric Sci 58:111–118

    Article  Google Scholar 

  • Abd El-Lattief EA (2016) Use of azospirillum and azobacter bacteria as biofertilizers in cereal crops: a review. Int J Res Eng Appl Sci 6(7):36–44

    Google Scholar 

  • Ahemad M, Khan MS (2009) Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chick pea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222

    Article  Google Scholar 

  • Ahemad M, Khan MS (2010a) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pestic Biochem Physiol 98:183–190

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Improvement in the growth and symbiotic attributes of fungicide-stressed chickpea plants following plant growth promoting fungicide-tolerant Mesorhizobium inoculation. Afr J Basic Appl Sci 2:111–116

    Google Scholar 

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86(9):945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and application of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82(1):313–319

    Article  CAS  Google Scholar 

  • Ahsan T, Chen J, Zhao X, Irfan M, Wu Y (2017) Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Exp 7:54

    Article  CAS  Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2(6):157–160

    Article  CAS  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbio 53(12):972–984

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Gen Mole Biol 35(4):1044–1051

    Article  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47(9):793–800

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Micro Cell Fact 13:66

    Article  Google Scholar 

  • Bhattacharyya D, Garladinne M, Lee Y (2015) Volatile indole produced by rhizobacteriumProteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 34:158–168

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bouffaud ML, Poirier MA, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other P oaceae. Env Microbiol 16(9):2804–2814

    Article  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rau P, Huettel B, Reinhardt R, Schmelzer E, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91

    Article  CAS  PubMed  Google Scholar 

  • Bull CT, Shetty KG, Subbarao KV (2002) Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):2001793

    Article  CAS  Google Scholar 

  • Busi S, Pattnaik SS (2018) Current status and applications of actinobacteria in the production of anticancerous compounds. In: New and future developments in microbial biotechnology and bioengineering, Elsevier, pp 137–153

    Google Scholar 

  • CarvalhaisLC Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8(2):56457

    Article  CAS  Google Scholar 

  • Cassan F, Maiale S, Masciarellia O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MC, Santoyo G, Macías-Rodríguez L, Valencia-Cantero E (2015) Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (Strategy II Plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623

    Article  CAS  Google Scholar 

  • Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, Vicente AD, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103(5):1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizospheremicrobiome assemblage is affected by plant development. ISME J 8(4):790

    Article  CAS  PubMed  Google Scholar 

  • Chapelle E, Mendes R, Bakker PAH, Raaijmakers JM (2016) Fungal invasion of the rhizospheremicrobiome. ISME J 10(1):265

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157(3):503–523

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Song GC, Ryu CM (2016) Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soil borne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Combes-Meynet E, Pothier JF, Moenne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillumgenes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Brion D, Jerzy N, Christophe C, Essaid AB (2005) Use of Plant Growth-Promoting Bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997a) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  CAS  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997b) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotech 25:1–10

    Google Scholar 

  • de Garcia, Salamone IE, Hynes RK, Nelson LM (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. PGPR: biocontrol and biofertilization. Springer, Netherlands, Amsterdam, pp 173–195

    Google Scholar 

  • de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Google Scholar 

  • Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: so many achievements and even more challenges. Plant Soil 321:1–3

    Article  CAS  Google Scholar 

  • Dhore M, Barate D, Musaddiq M (2014) Studies on in-vitro anti microbial potential of rhizospheric soil bacteria against multi drug resistant clinical isolates. Ind J Appl Res 4(7):446–449

    Article  Google Scholar 

  • Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Zhu YG (2019) Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiz040

    Article  PubMed  Google Scholar 

  • Ditengou FA, Muller A, Rosenkranz M, Felten J, Lasok H, Van Doorn MM, Legué V, Palme K, Schnitzler JP, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279

    Article  CAS  PubMed  Google Scholar 

  • Doornbos R, Loon L, Bakker PHM (2012) Impact of root exudates and plant defence signaling on bacterial communities in the rhizosphere: a review. Agron Sust Dev 32(1):227–243

    Article  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. P Natl Acad Sci 112(8):911–920

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • El-Gamal NG, Shehata AN, Hamed ER, Shehata HS (2016) Improvement of lytic enzymes producing Pseudomonas fluorescens and Bacillus subtilis isolates for enhancing their biocontrol potential against root rot disease in tomato plants. Res J Pharm Biol Chem Sci 7(1):1393–1400

    Google Scholar 

  • El-Tarabily KA (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Bot 84(2):211–222

    CAS  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GESTJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49(5):573–583

    Article  Google Scholar 

  • Fagodiya RK, Pathak H, Bhatia A, Kumar A, Singh SD, Jain N (2017a) Simulation of Maize (Zea Mays L.) yield under alternative nitrogen fertilization using infocrop-maize model. Biochem Cell Arch 17:65–71

    Google Scholar 

  • Fagodiya RK, Pathak H, Kumar A, Bhatia A, Jain N (2017b) Global temperature change potential of nitrogen use in agriculture: a 50-year assessment. Sci Rep 7:44928

    Google Scholar 

  • Felestrino ÉB, Vieira IT, Caneschi WL, Cordeiro IF, Assis RDAB, de CarvalhoLemes CG, Fonseca NP, Sanchez AB, Cepeda JCC, Ferro JA, Garcia CCM (2018) Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil. World J Microbiol Biotechn 34(10):156

    Article  CAS  Google Scholar 

  • Fierro-Coronado RA, Quiroz-Figueroa FR, García-Pérez LM, Ramírez-Chávez E, Molina-Torres J, Maldonado-Mendoza IE (2014) IAA-producing rhizobacteria from chickpea (Cicerarietinum L.) induce changes in root architecture and increase root biomass. Can J Microbiol 60(10): 639–648

    Article  CAS  PubMed  Google Scholar 

  • Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115(6):E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folman LB, Postma J, Van Veen JA (2003) Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1 T8, a powerful antagonist of fungal diseases of cucumber. Microbiol Res 158:107–115

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye A, Rai AR, Meshram SU, Dongre AB (2010) Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusariumoxysporum. World J Microbiol Biotechnol 26(7):1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Geetanjali, Jain P (2016) Antibiotic production by rhizospheric soil microflora-a review. Int J Pharm Sci Res 7(11):4304–4314

    Google Scholar 

  • Gherbawy Y, Elhariry H, Altalhi A, El-Deeb B, Khiralla G (2012) Molecular screening of Streptomycesisolates for antifungal activity and family 19 chitinase enzymes. J Microbiol 50(3):459–468

    Article  CAS  PubMed  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination seedling growth and yield of maize. Int J Biol Life Sci 5:1

    Google Scholar 

  • Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica 1–5

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theoretical Biol 190:63–68

    Article  CAS  Google Scholar 

  • Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC (2015) Antagonistic mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE 10(2):e0116871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grossman JM, Schipanski ME, Sooksanguan T, Drinkwater LE (2011) Diversity of rhizobia nodulating soybean Glycine max (Vinton) varies under organicand conventional management. Appl Soil Ecol 50:14–20

    Article  Google Scholar 

  • Gutiérrez‐Mañero FJ, Ramos‐Solano B, Probanza AN, Mehouachi J, Tadeo FR, Talon M (2001) The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111(2):206–211

    Article  Google Scholar 

  • Harrison LA, Letendre L, Kovacevich P, Pierson E, Weller D (1993) Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol Biochem 25:215–221

    Article  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi A, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscularmy corrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Plant Sci 7:1089

    Google Scholar 

  • Hayden HL, Savin K, Wadeson J, Gupta V, Mele PM (2018) Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol 9:859

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidri R, Barea JM, Mahmoud OM, Abdelly C, Azcón R (2016) Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. J Plant Physiol 201:28–41

    Article  CAS  PubMed  Google Scholar 

  • Howie WJ, Suslow T (1991) Role of antibiotic synthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant-Microbe Interact 4:393–399

    Article  CAS  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Article  Google Scholar 

  • Hussain N, Mujeeb F, Tahir M, Khan GD, Hassan NM, Bari A (2002) Effectiveness of Rhizobium under salinity stress. Asian J Plant Sci 1:12–14

    Article  Google Scholar 

  • Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3(5):00070

    Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL (1997) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119

    Article  Google Scholar 

  • Jimtha JC, Jishma P, Arathy GB, C Anisha, Radhakrishnan EK (2016) Identification of plant growth promoting Rhizosphere Bacillus sp. WG4 antagonistic to Pythium myriotylum and its enhanced antifungal effect in association with Trichoderma. J Soil Sci Plant Nutr 16(3):578–590

    Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2000) World J Microbiol Biotechnol 16(6):567–570

    Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IN (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Kang SM (2014) Bacterial endophytes Sphingomonas sp LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, pp 879–882

    Google Scholar 

  • Kour D, Rana KL, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 321–372

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AEL, Dhaliwal HS, Saxena, AK (2019). Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 255–308

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN (2019b) Bioprospecting of phosphorus solubilizing bacteria from Renuka Lake Ecosystems, Lesser Himalayas. J Appl Biol Biotechnol 7:1–6

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019c) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer Singapore, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019d) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, Kumar R, Khan SA, Yadav KK, Rana KL, Kour D, Yadav N, Yadav AN (2019) Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham

    Chapter  Google Scholar 

  • Kumar A, Gupta DK, Kumar M (2013) Green manure crops: a boon for agricultural soil. Int J Agri Environ Biotechnol 6:193

    Google Scholar 

  • Kumar A, Kumar A, Devi S, Patil S, Chandani P, Nagi S (2012) Isolation, screening and characterization of bacteria from rhizospheric soils from different plant growth promotion activities: as in vitro study. Recent Res Sci Technol 4(1):1–5

    Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012a) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacilluspolymyxa. PLoS One 7:48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, Park K (2015) Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 39(3):213–220

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Tindwa H, Lee YS, Naing KW, Hong SH, Nam Y, Kim KY (2012b) Biocontrol of anthracnose in pepper using chitinase, beta-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J Microbiol Biotechnol 2(10):1359–1366

    Article  CAS  Google Scholar 

  • Leff JW, Lynch RC, Kane NC, Fierer N (2017) Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol 214(1):412–423

    Article  CAS  PubMed  Google Scholar 

  • Lei S, Xu X, Cheng Z, Xiong J, Ma R, Zhang L, Yang X, Zhu Y, Zhang B, Tian B (2019) Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa. Microbiol Open. https://doi.org/10.1002/mbo3.762

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Cai J, XieCh-Ch Liu Ch, Chen Y-H (2010) Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis spp. colmeri, and its biocontrol potential. Enzyme Microb Technol 46:252–256

    Article  CAS  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Ke M, Peijnenburg WJGM, Zhu Y, Zhang M, Sun L, Fu Z, Qian H (2018) Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J Agri Food Chem 66(11):2645–2653

    Article  CAS  Google Scholar 

  • Lucas JA, Solano BR, Montes F, Ojeda J, Megias M, Gutierrez Ma-nero FJ (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop Res 114:404–410

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizo-bacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69(8):4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  PubMed  Google Scholar 

  • Mahanty T, Bhattacharjee S, Madhurankhi Goswami, Bhattacharyya P, Bannhi Das, Ghosh A, Tribedi P (2016) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335

    Article  CAS  Google Scholar 

  • Majumdar K, Razdan M, Aggarwal N, Murali KK, Bhattacharya RC, Dureja P (2011) Isolation and characterization of a potential biocontrol agent Bacillus KM5 from rhizosphere soil of a rice plant. Arch Phytopathol PFL 44(12):1196–1212

    Article  CAS  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Mali GV, Bodhankar MG (2009) Antifungal and phytohormone production potential of Azotobacterchroococcum isolates from Groundnut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci 23:293–297

    CAS  Google Scholar 

  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SK, Tomer R, Kumar O, Jain N, (2016a) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Science of The Total Environment 572:874–896

    Article  CAS  Google Scholar 

  • Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS, Yadav AN (2019) Role of Fungi in Climate Change Abatement Through Carbon Sequestration. In: Yadav A., Singh S., Mishra S., Gupta A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham

    Chapter  Google Scholar 

  • Malyan SK, Kumar SS, Kumar A, Kumar J (2016b) Water management tool in rice to combat two major environmental issues: global warming and water scarcity. In: Kumar S, Beg MA (eds) Environmental concerns of 21st century: Indian and global context, pp 43–58. (ISBN: 978-93-83281-65-7)

    Google Scholar 

  • Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML (2010) Assessment of the plant growth promotion abilities using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconabacter azotocaptans and Azospirilum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecol 51:326–335

    Article  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47(2):110–117

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007) Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30:519–524

    Article  CAS  PubMed  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8(8):1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Maffei M, Gullino M, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compounds (MVOC) emission. FEMS Microbiol Ecol 76:342–351

    Article  CAS  PubMed  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant and Soil 237(1):47–54

    Article  Google Scholar 

  • Mishra S., Goyal D., Kumar A., Dantu P.K. (2019) Biotechnological Applications of β-Glucosidases in Biomass Degradation. In: Yadav A., Singh S., Mishra S., Gupta A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham

    Chapter  Google Scholar 

  • Mishra SK, Khan MH, Misra S, Dixit KV, Khare P, Srivastava S, Chauhan PS (2017) Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Van Leeuwenhoek 110:253–270

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi K (2010) Ecophysiological response ofcanola (Brassica napus L.) to different fertility systems incrop rotation. PhD thesis. Agronomy Department. Tarbiat Modares University, Tehran, Iran, p 354

    Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M, Heidari GR, Sohrabi Y (2011) Introducing the sustainable soilfertility system for chickpea (Cicer arietinum L.). Afr J Biotechnol 10(32):6011–6020

    Google Scholar 

  • Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorgani 6(1):14

    Article  CAS  Google Scholar 

  • Mukherjee J, Mridha N, Mondal S, Chakraborty D, Kumar A (2018) Identifying suitable soil health indicators under variable climate scenarios: a ready reckoner for soil management. In: Bal S, Mukherjee J, Choudhury B, Dhawan A (eds) Advances in crop environment interaction. Springer, Singapore

    Chapter  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–5766

    Article  CAS  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P et al (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases. Crit Rev Biotechnol 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescensDR54. J Appl Microbiol 87:80–90

    Article  CAS  PubMed  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40:1064–1066

    Article  CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, So NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathol 95:701–707

    Article  CAS  Google Scholar 

  • Park Y, Dutta S, Ann M, Raaijmakers J, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365

    Article  CAS  PubMed  Google Scholar 

  • Pathak H, Jain N, Bhatia A, Kumar A, Chatterjee D (2016) Improved nitrogen management: a key to climate change adaptation and mitigation. Indian J Fertil 12(11):151–162

    Google Scholar 

  • Patil PL, Medhane NS (1974) Seed inoculation studies in gram (Cicer arietinum) with different strains of Rhizobium sp. Plant Soil 40:221–223

    Article  Google Scholar 

  • Paul D, Park KS (2013) Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors (Basel) 13:13969–13977

    Article  CAS  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LF, de Hollander M, Garcia AA, Ramírez CA, Mendes R, Raaijmakers JM (2017) Linking rhizospheremicrobiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11(10):2244

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant-growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications forinoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Pierson LS III, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136:101–108

    Article  CAS  Google Scholar 

  • Prasanna L, Eijsink VGH, Meadow R, Gåseidnes S (2013) A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biot 97(4):1601–1611

    Article  CAS  Google Scholar 

  • Purkayastha GD, Mangar P, Saha A, Saha D (2018) Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE 13(2):0191761

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Pl Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole SP (2011) Adaptationof Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizosphere investigated by comparative transcriptomics. Genome Biol 12:106–109

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent Advancement in White Biotechnology through Fungi, vol 1. Diversity and Enzymes Perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2018) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30

    Google Scholar 

  • Rashid MH, Schafer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109

    Article  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Book  Google Scholar 

  • Raza A, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. Aust J Crop Sci 7:1693–1698

    Google Scholar 

  • Reddy KRN, Choudary KA, Reddy MS (2007) Antifungal metabolites of Pseudomonas fluorescens isolated from rhizosphere of rice crop. J Mycol Plant Pathol 37(2):280–284

    CAS  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ (2000) Productionof B-Group vitamins by two Azotobacter strains with phenolic compoundsas sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  CAS  PubMed  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007a) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283

    Article  CAS  PubMed  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007b) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  PubMed  Google Scholar 

  • Ryu C, Farag M, Hu C, Reddy M, Wei H, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandilya SP, Bhuyan PM, Gogoi DK, Kardong D (2016) Phosphorus solubilization and plant growth promotion ability of rhizobacteria of R. communis L. growing in Assam, India. Proc Natl Acad Sci India Sect B Biol Sci 88(3):959–966

    Article  CAS  Google Scholar 

  • Sandilya SP, Bhuyan PM, Vijay N, Gogoi DK, Kardong D (2017) Impact of Pseudomonas aeruginosa strain MAJ PIA03 affecting the growth and phytonutrient production of castor, a primary host-plant of Samia ricini. J Soil Sci Plant Nutr 17(2):499–515

    CAS  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47(8):698–705

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, Van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71(11):6501–6507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equipment. https://doi.org/10.1080/13102818.2017.1286950

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam PM, Veeraputhran R (2000) Effect oforganic manure, biofertilizers, inorganic nitrogen and zincon growth and yield of rabi rice. Madras Agric J 2:87–90

    Google Scholar 

  • Sharma A, Kumar A, Dhaka TS (2012a) Impact on sugar factory effluent on chlorophyll and protein contents of Cicer arietinum and Tigonella foenum-gracecum. Curr Adv Agri Sci 4(1):62–63

    Google Scholar 

  • Sharma A, Kumar A, Dhaka TS (2012b) Impact of sugar factory effluent on seed germination, seedling growth of Cicer arietinum and Trigonella foenum-graecum. Bioinfolet 9(2):220–221

    Google Scholar 

  • Sharma P, Sardana V, Kandola SS (2011) Response of groundnut (Arachis hypogaea L.) to Rhizobium Inoculation. Libyan Agric Res Centre J Int 2:101–104

    Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Shih HD, Liu YC, Hsu FL, Mulabagal V, Dodda R, Huang JW (2003) Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctoniasolani. J Agric Food Chem 51(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3(1):46–52

    Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Pandey DK, Kumar A et al (2017) PGPR isolates from the rhizosphere of vegetable crop Momordica charantia: characterization and application as biofertilizer. Int J Curr Microbiol App Sci 6(3):1789–1802

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticumaestivum). Front Plant Sci 7:1890

    PubMed  PubMed Central  Google Scholar 

  • Sirohi MH, Jackson J, Edwards M, Ollerton J (2015) Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). J Insect Consev 123–136

    Google Scholar 

  • Sneha S, Anitha B, Sahair RA, Raghu N, Gopenath TS, Chandrashekrappa GK, Basalingappa KM (2018) Biofertilizer forcrop production and soil fertility. Acad J Agric Res 6(8):299–306

    CAS  Google Scholar 

  • Sofia IA, Paula P, Castro ML (2014) Phosphate solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol Eng 73:526–535

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions cold spring harbor. Perspect Biol 3(4):a001438

    Google Scholar 

  • Stutz EG, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathol 76:181–185

    Article  Google Scholar 

  • Subrahmanyam G, Archana G (2011) Plant growth promoting activity of Enterobacter sp. C1D in heavy metal contaminated soils. In: Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture, pp 440

    Google Scholar 

  • Subrahmanyam G, Sharma RK, Kumar GN, Archana G (2018). Vigna radiata var. GM4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium Enterobacter sp. C1D in Cr (VI)-amended soils. Pedosphere 28(1):144–156

    Article  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tian BY, Cao Y, Zhang KQ (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31(13):1847–1852

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of cellular constituents of the nitrogen fixing blue-green algae. Cylindrospermum musciola on the rootgrowth of rice seedlings. J General Appl Microbiol 13:53–61

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Voisard C, Bull CT, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, Germany, pp 67–89

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2013) Antagonistic activity of plant growth promoting rhizobacteria isolated from tomato rhizosphere against soil borne fungal plant pathogens. Inte J Agri Environ Biotechnol 6(4):571–580

    Article  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum incrop production: an overview. Curr Agric Res J 1:35–38

    Article  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Mole 17:10754–10773

    Article  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256

    Article  PubMed  Google Scholar 

  • Widawati S (2011) Diversity and phosphate solubilization by bacteria isolated from laki island coastal ecosystem. Biodiversitas 12(1):17–21

    Article  Google Scholar 

  • Xie X, Zhang H, Paré P (2009) Sustained growth promotion in Arabidopsis with longterm exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9(1):4894

    Google Scholar 

  • Xue L, Xue Q, Chen Q, Lin C, Shen G, Zhao J (2013) Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Prot 43:231–240

    Article  Google Scholar 

  • Yadav AN (2017a) Agriculturally important microbiomes: biodiversity and multifarious PGP Attributes for Amelioration of Diverse Abiotic Stresses in Crops for Sustainable Agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2017b) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci 1:1–4

    Google Scholar 

  • Yadav AN (2019) Microbiomes of wheat (Triticum aestivum L.) endowed with multifunctional plant growth promoting attributes. EC Microbiol 15:1–6

    CAS  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS, Sayyed RZ, Kaushik R, Saxena AK (2019b) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer Singapore, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019c) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019d) Recent advancement in white biotechnology through fungi: volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019e) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017b) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298

    Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017c) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8 https://doi.org/10.19080/ijesnr.2017.03.555601

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. USA, pp 13–41. https://doi.org/10.1016/b978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, Singh BP, Saxena AK, Dhaliwal HS (2018c) Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: New and future developments in microbial biotechnology and bioengineering, pp. 13–41

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017c) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agr 2:85–88

    Google Scholar 

  • Yadav AN, Yadav N, Kour D, Kumar A, Yadav K, Kumar A, Rastegari AA, Sachan SG, Singh B, Chauhan V, Saxena AK (2019). Bacterial community composition in lakes. In: Freshwater microbiology. Academic Press, pp 1–71

    Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019f) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99-108

    Google Scholar 

  • Yi HS, Ahn YR, Song GC, Ghim SY, Lee S, Lee G, Ryu CM (2016) Impact of a bacterial volatile 2, 3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol 7:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeller SL, Brand H, Schmid B (2007) Host-plant selectivity of rhizobacteria in a crop/weed model system. PLoS ONE 2(9):846

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim M, Dowd S, Paré P (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48:460–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, CMER&TI, Central Silk Board, Lahdoigarh for valuable guidance and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangavarapu Subrahmanyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subrahmanyam, G., Kumar, A., Sandilya, S.P., Chutia, M., Yadav, A.N. (2020). Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_1

Download citation

Publish with us

Policies and ethics