Skip to main content

Introduction

  • Chapter
  • First Online:
Myosins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1239))

Abstract

This book, a collection of chapters written by some of the leading researchers in the field of molecular motors, highlights the current understanding of the structure, molecular mechanism, and cellular roles of members of the myosin superfamily. Here, I briefly review the discovery of the first myosin motor, skeletal muscle myosin-II, and preview the contents of subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batters C, Veigel C (2016) Mechanics and activation of unconventional myosins. Traffic 17:860–871. https://doi.org/10.1111/tra.12400

    Article  CAS  PubMed  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12(4):780–794

    Article  CAS  Google Scholar 

  • Collins JH, Borysenko CW (1984) The 110,000-dalton actin- and calmodulin-binding protein from intestinal brush border is a myosin-like ATPase. J Biol Chem 259(22):14128–14135

    CAS  PubMed  Google Scholar 

  • Coluccio LM, Bretscher A (1987) Calcium-regulated cooperative binding of the microvillar 110K-calmodulin complex to F-actin: formation of decorated filaments. J Cell Biol 105(1):325–333

    Article  CAS  Google Scholar 

  • Engelhardt WA, Ljubimowa MN (1939) Myosine and adenosinetriphosphatase. Nature 144:668–669

    Article  CAS  Google Scholar 

  • Espreafico EM, Cheney RE, Matteoli M, Nascimento AA, De Camilli PV, Larson RE, Mooseker MS (1992) Primary structure and cellular localization of chicken brain myosin-V (p 190), an unconventional myosin with calmodulin light chains. J Cell Biol 119(6):1541–1557

    Article  CAS  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103:3681–3686

    Article  CAS  Google Scholar 

  • Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS, Burgess DR, Burnside B, Cheney RE, Corey DP, Coudrier E, de Lanerolle P, Hammer JA, Hasson T, Holt JR, Hudspeth AJ, Ikebe M, Kendrick-Jones J, Korn ED, Li R, Mercer JA, Milligan RA, Mooseker MS, Ostap EM, Petit C, Pollard TD, Sellers JR, Soldati T, Titus MA (2001) Myosin-I nomenclature. J Cell Biol 155(5):703–704. https://doi.org/10.1083/jcb.200110032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson J, Huxley HE (1953) Structural basis of cross-striations in muscle. Nature 172:530–532

    Article  CAS  Google Scholar 

  • Heissler SM, Manstein DJ (2013) Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 70(1):1–21. https://doi.org/10.1007/s00018-012-1002-9

    Article  CAS  PubMed  Google Scholar 

  • Heissler SM, Sellers JR (2016) Kinetic adaptations of Myosins for their diverse cellular functions. Traffic 17:839–859. https://doi.org/10.1111/tra.12388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe CL, Mooseker MS (1983) Characterization of the 110-kdalton actin-calmodulin-, and membrane-binding protein from microvilli of intestinal epithelial cells. J Cell Biol 97(4):974–985

    Article  CAS  Google Scholar 

  • Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3(5):631–648

    Article  CAS  Google Scholar 

  • Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    Article  CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibers. Nature 173:971–978

    Article  CAS  Google Scholar 

  • Kühne W (1864) Untersuchungen über das Protoplasma und die Contractilität. Verlag von Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  • Lowey S, Slayter HS, Weeds AG, Baker H (1969) Substructure of the myosin molecule. I Subfragments of myosin by enzymic degradation. J Mol Biol 42(1):1–29

    Article  CAS  Google Scholar 

  • Manstein DJ, Ruppel KM, Spudich JA (1989) Expression and characterization of a functional myosin head fragment in Dictyostelium discoideum. Science, NY 246(4930):656–658

    Article  CAS  Google Scholar 

  • Maruta H, Korn ED (1977a) Acanthamoeba myosin II. J Biol Chem 252(18):6501–6509

    CAS  PubMed  Google Scholar 

  • Maruta H, Korn ED (1977b) Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin. J Biol Chem 252(1):399–402

    CAS  PubMed  Google Scholar 

  • Masters TA, Kendrick-Jones J, Buss F (2017) Myosins: domain organisation, motor properties, physiological roles and cellular functions. Handb Exp Pharmacol 235:77–122. https://doi.org/10.1007/164_2016_29

    Article  CAS  PubMed  Google Scholar 

  • Matsudaira PT, Burgess DR (1979) Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol 83(3):667–673

    Article  CAS  Google Scholar 

  • Matsudaira PT, Burgess DR (1982) Organization of the cross-filaments in intestinal microvilli. J Cell Biol 92(3):657–664

    Article  CAS  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus [published erratum appears in nature 1991 Aug 8;352(6335):547]. Nature 349 (6311):709–713

    Google Scholar 

  • Montell C, Rubin GM (1988) The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52(5):757–772

    Article  CAS  Google Scholar 

  • Mooseker MS, Coleman TR (1989) The 110-kD protein-calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J Cell Biol 108(6):2395–2400

    Article  CAS  Google Scholar 

  • Mooseker MS, Foth BJ (2008) The structural and functional diversity of the myosin family of actin-based molecular motors. In: Coluccio LM (ed) Myosins: a superfamily of molecular motors, Proteins and cell regulation, vol 7. Springer, Dordrecht, pp 1–34

    Google Scholar 

  • Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8(9):R196

    Article  Google Scholar 

  • Pollard TD, Korn ED (1973a) Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248(13):4682–4690

    CAS  PubMed  Google Scholar 

  • Pollard TD, Korn ED (1973b) Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg2+ adenosine triphosphatase activity. J Biol Chem 248(13):4691–4697

    CAS  PubMed  Google Scholar 

  • Pollard TD, Stafford WF, Porter ME (1978) Characterization of a second myosin from Acanthamoeba castellanii. J Biol Chem 253(13):4798–4808

    CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor [see comments]. Science NY 261(5117):50–58

    Article  CAS  Google Scholar 

  • Straub FB (1942) Actin. Studies from the Institute of Medical Chemistry University Szegeb II

    Google Scholar 

  • Szent-Györgyi AG (2004) The early history of the biochemistry of muscle contraction. J Gen Physiol 123:631–641

    Article  Google Scholar 

  • Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328(6130):536–539

    Article  CAS  Google Scholar 

  • Verner K, Bretscher A (1985) Microvillus 110K-calmodulin: effects of nucleotides on isolated cytoskeletons and the interaction of the purified complex with F-actin. J Cell Biol 100:1455–1465

    Article  CAS  Google Scholar 

  • Wang A, Ma X, Conti MA, Adelstein RS (2011) Distinct and redundant roles of the non-muscle myosin II isoforms and functional domains. Biochem Soc Trans 39(5):1131–1135. https://doi.org/10.1042/BST0391131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

It is my great pleasure to acknowledge and thank the international team of scientists whose hard work made this book possible. I have no doubt that the fruits of your efforts will serve as important resources for both scientists and students alike. I thank Gonzalo Cordova, Springer-Dordrecht, for the opportunity to edit this book and the able assistance of the editorial team at Springer-Dordrecht for its production. The studies in my laboratory are supported by NIH grant GM111615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne M. Coluccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coluccio, L.M. (2020). Introduction. In: Coluccio, L. (eds) Myosins. Advances in Experimental Medicine and Biology, vol 1239. Springer, Cham. https://doi.org/10.1007/978-3-030-38062-5_1

Download citation

Publish with us

Policies and ethics