Skip to main content

A Prediction Method of Dynamic Cutting Forces and Machine-Tool Vibrations When Milling by Using Ball-End Mill Cutter

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 104))

Included in the following conference series:

Abstract

In this paper, the cutting forces and machine-tool vibrations in ball-end mill process were modeled by using mathematical functions. All derivations of cutting forces are directly based on the tangential, radial, and axial cutting force components. The cutting force and vibration models can be formulated by a function of many parameters such as cutting force coefficients, cutter geometry, cutting conditions, and so on. The proposed cutting force model has been successfully verified by both simulation and experiment with very promising results. Besides, the machine-tool vibrations are also predicted for ball-end mill process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( {\text{D}} \) :

The diameter of cutter [mm]

\( {\text{R}}_{0} \) :

The diameter of cutter [mm]

\( {\text{N}}_{\text{f}} \) :

The number of flutes on the cutter

\( \upbeta \) :

The helix angle on the cutter [deg]

\( \upphi_{\text{P}} \) :

The cutter pitch angle [deg]

\( {\text{a }} \) :

The full axial depth of cut [mm]

\( {\text{dz}} \) :

The differential axial depth of cut [mm]

\( \Psi \left( {\upphi_{\text{j}} \left( {\text{z}} \right)} \right) \) :

The lag angle at an axial depth of cut z [deg]

\( \Psi _{0} \) :

The lag angle at maximum axial depth of cut z = a [deg]

\( \upphi_{\text{j}} \) :

The instantaneous immersion angle of flute number j, \( \left( {{\text{j }} = 1 \sim {\text{N}}_{\text{f}} } \right) \) [deg]

\( \upphi_{\text{j}} \left( {\text{z}} \right) \) :

The instantaneous immersion angle of flute number j in z cutting depth, \( ({\text{j }}=1\sim {\text{N}}_{\text{f}} ) \) [deg]

\( {\text{h}}_{\text{j}} \left( {\upphi_{\text{j}} \left( {\text{z}} \right)} \right) \) :

The instantaneous chip thickness at immersion angle \( \upphi_{\text{j}} \) [mm]

\( {\text{db}} \) :

The chip width [mm]

\( {\text{dS}}\left( {\upphi_{\text{j}} \left( {\text{z}} \right)} \right) \) :

The edge length of the cutting segment [mm]

\( r\left( {\upphi_{\text{j}} \left( z \right)} \right) \) :

The radius of a circle on xy plane at an arbitrary point (P) on cutting edge [mm]

\( {\text{f}}_{\text{t}} \) :

The feed per tooth [mm/tooth]

\( \upkappa\left( {\text{z}} \right) \) :

The axial immersion angle at z axial depth of cut

\( {\text{K}}_{\text{tc}} , {\text{K}}_{\text{rc}} , {\text{K}}_{\text{ac}} \) :

The shearing force coefficient [N/mm²]

\( {\text{K}}_{\text{te}} , {\text{K}}_{\text{re}} , {\text{K}}_{\text{ae}} \) :

The edge force coefficient [N/mm]

\( {\text{dF}}_{{{\text{i}},{\text{j}}}} \left( {\upphi,{\text{z}}} \right) \) :

The differential cutting force [N]

\( {\text{F}}_{\text{f}} \left(\upphi \right), {\text{F}}_{\text{n}} \left(\upphi \right), {\text{F}}_{\text{a}} \left(\upphi \right) \) :

The cutting force in feed, normal, and axial direction [N]

\( {\text{t}} \) :

The rotation time [Sec]

\( \uptau \) :

The tool passing period [Sec]

\( {\text{w}}_{\text{t}} \left( {\upphi_{\text{j}} } \right) \) :

The dynamic displacement of current flute [mm]

\( {\text{w}}_{{\left( {{\text{t}} -\uptau} \right)}} (\upphi_{\text{j}} ) \) :

The dynamic displacement of previous flute [mm]

\( {\text{x}}_{\text{t}} , {\text{y}}_{\text{t}} ,{\text{x}}_{{\left( {{\text{t}} -\uptau} \right)}} , {\text{y}}_{{\left( {{\text{t}} -\uptau} \right)}} \) :

The machine tool vibrations at time t and \( \left( {{\text{t}} -\uptau} \right) \) [mm]

\( \left[ {{\text{m}}_{\text{x}} , {\text{m}}_{\text{y}} } \right] \) :

The mass matrix of machine-tool dynamic structure [kg]

\( \left[ {{\text{c}}_{\text{x}} ,{\text{c}}_{\text{y}} } \right] \) :

The damping constant matrix of machine-tool dynamic structure

\( \left[ {\upomega_{\text{x}} ,\upomega_{\text{y}} } \right] \) :

The natural frequency matrix of machine tool dynamic structure [Hz]

\( \left[ {{\text{k}}_{\text{x}} ,{\text{k}}_{\text{y}} } \right] \) :

The stiffness matrix of machine-tool dynamic structure [N/m].

References

  1. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd edn. Cambridge University Press, New York (2012). ISBN 978-1-00148-0

    Google Scholar 

  2. Sonawane, H.A., Joshi, S.S.: Analytical modeling of chip geometry and cutting forces in helical ball end milling of superalloy Inconel 718. CIRP J. Manuf. Sci. Technol. 3, 204–217 (2010)

    Article  Google Scholar 

  3. Lee, P., Altintas, Y.: Prediction of ball-end milling forces from orthogonal cutting data. Int. J. Mach. Tools Manuf. 36, 1059–1072 (1996)

    Article  Google Scholar 

  4. Budak, E., Ozturk, E., Tunc, L.T.: Modeling and simulation of 5-axis milling processes. CIRP Ann. Manuf. Technol. 58(1), 347–350 (2009)

    Article  Google Scholar 

  5. Cheng, P.J., Tsay, J.T., Lin, S.C.: A study on instantaneous cutting force coefficients in face milling. Int. J. Mach. Tools Manuf. 37, 1393–1408 (1997)

    Article  Google Scholar 

  6. Bayoumi, A.E., Yucesan, G., Kendall, L.A.: An analytic mechanistic cutting force model for milling operations: a theory and methodology. Trans. ASME J. Eng. Ind. 116, 324–330 (1994)

    Article  Google Scholar 

  7. Larue, A., Anselmetti, B.: Deviation of a machined surface in flank milling. Int. J. Mach. Tools Manuf. 43, 129–138 (2003)

    Article  Google Scholar 

  8. Ko, J.H., Cho, D.W.: Determination of cutting-condition-independent coefficients and runout parameters in ball-end milling. Int. J. Adv. Manuf. Technol. 26, 1211–1221 (2005)

    Article  Google Scholar 

  9. Subrahmanyam, K.V.R., San, W.Y., Soon, H.G., Sheng, H.: Cutting force prediction for ball nose milling of inclined surface. Int. J. Adv. Manuf. Technol. 48, 23–32 (2010)

    Article  Google Scholar 

  10. Kao, Y.C., Nguyen, N.T., Chen, M.S., Su, S.T.: A prediction method of cutting force coefficients with helix angle of flat-end cutter and its application in a virtual three-axis milling simulation system. Int. J. Adv. Manuf. Technol. 77(9–12), 1793–1809 (2015)

    Article  Google Scholar 

  11. Kao, Y.C., Nguyen, N.T., Chen, M.S., Huang, S.C.: A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes. J. Comput. Des. Eng. 2(4), 233–247 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhu-Tung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, NT., Kao, YC., Dung, H.T., Trung, D.D. (2020). A Prediction Method of Dynamic Cutting Forces and Machine-Tool Vibrations When Milling by Using Ball-End Mill Cutter. In: Sattler, KU., Nguyen, D., Vu, N., Tien Long, B., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2019. Lecture Notes in Networks and Systems, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-37497-6_5

Download citation

Publish with us

Policies and ethics