Skip to main content

Abstract

Ecotoxicology is the study of the toxic effects of various materials on an ecosystem and its components, such as animals, plants, human beings, water sources, etc. The advent of nanotechnology and the rapid development of commercial nanoparticle products have had unforeseen effects on the ecosystem and the planet. Nanoparticles behave very differently to the bulk materials, making the prediction of their toxicological behavior to the environment difficult. With wide-area products such as pesticides, cosmetics, etc., making use of nanotechnology, the study of ecotoxicology of nanoparticles becomes very important. In addition to nanoparticles, many macromolecules such as chlorine, heavy metals like arsenic, organic molecules like chloroform, and many polymers all contribute to toxicity towards the ecosystem. The study of ecotoxicology is important because of the importance of knowing and addressing the adverse effects that the materials in daily use have on our environment and our health.

This chapter looks at the risks of ecotoxicology of nanomaterials and macromaterials on ecosystems and their components and the methods used to study these risks, such as dose-response tests, indirect exposure assessment tests, etc. This chapter also addresses the common methods and terminologies used in the study of ecotoxicology, such as LC50, EC50, etc., and works as the beginner’s guide to understand ecotoxicology, its causes, its effects, and its testing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Newman MC (2019) Fundamentals of ecotoxicology. CRC Press, Boca Raton. https://books.google.co.in/books?hl=en&lr=&id=sg_SBQAAQBAJ&oi=fnd&pg=PP1&dq=fundamentals+of+ecotoxicology+newman&ots=B324lISjTx&sig=xBnEVSz3np400aSDEPiYDYWDgx8&redir_esc=y#v=onepage&q&f=false. Accessed 10 May 2020

    Book  Google Scholar 

  2. Bennett D, Girling AE (1991) The role of ecotoxicology in determining the environmental effects of organic chemicals. Org Contam Environ:291–328. https://doi.org/10.1007/978-94-009-4329-2_10

  3. Truhaut R (1977) Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Saf 1:151–173. https://doi.org/10.1016/0147-6513(77)90033-1

    Article  CAS  Google Scholar 

  4. Jagoe C, Newman M (1996) Ecotoxicology: a hierarchical treatment. CRC/Lewis Publishers, Boca Raton

    Google Scholar 

  5. Committee on the design and evaluation of safer chemical substitutions: a framework to inform government and industry decision; Board on Chemical Sciences and Technology; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Research Council. A Framework to Guide Selection of Chemical Alternatives. National Academies Press (US), Washington (DC); 2014 Oct 29. 7, Assessment of Ecotoxicity. Available from: https://www.ncbi.nlm.nih.gov/books/NBK253975/. ISBN 978-0-309-38724-8. https://doi.org/10.17226/18872

  6. Walker CH (2008) Ecotoxicity testing: science, politics and ethics. Altern Lab Anim 36:103–112

    Article  CAS  Google Scholar 

  7. Lamon L, Aschberger K, Asturiol D et al (2019) Grouping of nanomaterials to read-across hazard endpoints: a review. Nanotoxicology 13:100–118. https://doi.org/10.1080/17435390.2018.1506060

    Article  CAS  Google Scholar 

  8. Cockburn A, Bradford R, Buck N et al (2012) Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 50:2224–2242. https://doi.org/10.1016/j.fct.2011.12.029

    Article  CAS  Google Scholar 

  9. Belden J (2020) Introduction to ecotoxicology. In: An introduction to interdisciplinary toxicology. Elsevier, Amsterdam, pp 381–393

    Chapter  Google Scholar 

  10. Jobling S, Nolan M, Tyler CR et al (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506. https://doi.org/10.1021/es9710870

    Article  CAS  Google Scholar 

  11. Wang H, Liang Y, Li S, Chang J (2013) Acute toxicity, respiratory reaction, and sensitivity of three cyprinid fish species caused by exposure to four heavy metals. PLoS One 8:e65282. https://doi.org/10.1371/journal.pone.0065282

    Article  CAS  Google Scholar 

  12. Oomen AG, Steinhäuser KG, Bleeker EAJ et al (2018) Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 9:1–13

    Article  Google Scholar 

  13. Gusev AA, Fedorova IA, Tkachev AG et al (2012) Acute toxic and cytogenetic effects of carbon nanotubes on aquatic organisms and bacteria. Nanotechnol Russ 7:509–516. https://doi.org/10.1134/S1995078012050060

    Article  Google Scholar 

  14. Kapustka LA, Goncharova NV, Arapis GD (2006) Methods and tools in ecotoxicology and ecological risk assessment working group summary. In: Ecotoxicology, ecological risk assessment and multiple stressors. Kluwer Academic, Amsterdam, pp 371–377

    Chapter  Google Scholar 

  15. Worth AP (2018) Types of toxicity and applications of toxicity testing. In: The history of alternative test methods in toxicology. Elsevier, New York, pp 7–10

    Google Scholar 

  16. Paquin PR, Gorsuch JW, Apte S et al (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C Toxicol Pharmacol 133:3–35

    Article  Google Scholar 

  17. Cui X, Mayer P, Gan J (2013) Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations. Environ Pollut 172:223–234

    Article  CAS  Google Scholar 

  18. Escher BI, Ashauer R, Dyer S et al (2011) Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. Integr Environ Assess Manag 7:28–49. https://doi.org/10.1002/ieam.100

    Article  CAS  Google Scholar 

  19. Devilleis J, Bintein S, Domine D (1996) Comparison of BCF models based on log P. Chemosphere 33:1047–1065. https://doi.org/10.1016/0045-6535(96)00246-9

    Article  Google Scholar 

  20. Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principles of ecotoxicology, 4th edn. CRC Press, Boca Raton. https://books.google.com/books?id=sk3OBQAAQBAJ&pgis=1. Accessed 10 May 2020

    Google Scholar 

  21. Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3:364–372. https://doi.org/10.1897/1551-3793(2007)3[364:HWCWPT]2.0.CO;2

    Article  CAS  Google Scholar 

  22. Pereira R, Cachada A, Sousa JP et al (2017) Ecotoxicological effects and risk assessment of pollutants. In: Soil pollution: from monitoring to remediation. Elsevier, London, pp 191–216

    Google Scholar 

  23. Appendix B: ecotoxicity in frameworks. A framework to guide selection of chemical alternatives. The National Academies Press, Washington, DC. https://www.nap.edu/read/18872/chapter/18. Accessed 10 May 2020. ISBN 978-0-309-38724-8. https://doi.org/10.17226/18872

  24. National Research Council (2014) A framework to guide selection of chemical alternatives. The National Academies Press, Washington, DC. https://doi.org/10.17226/18872

  25. European Chemicals Agency (2011) Guidance on the preparation of an application for authorisation. European Chemicals Agency, Helsinki

    Google Scholar 

  26. UBA (2011) Guide on sustainable chemicals. www.umweltbundesamt.de/uba-info-medien-e/4169.html. Accessed 10 May 2020

  27. Rossi MS, Thorpe B, Peele C (2011) Features-shifting markets businesses and advocacy groups create a road map for safer chemicals: the BIzNGO principles for chemicals policy. New Solut 21:387–402. https://doi.org/10.2190/NS.21.3.f

    Article  Google Scholar 

  28. Drexler KE (2006) Engines of creation 2.0. The coming era of nanotechnology. Anchor Books, New York

    Google Scholar 

  29. Zingg R, Fischer M (2019) The rise of private–public collaboration in nanotechnology. Nano Today 25:7–9. https://doi.org/10.1016/j.nantod.2019.01.002

    Article  CAS  Google Scholar 

  30. Kennedy AJ, Coleman JG, Diamond SA et al (2017) Assessing nanomaterial exposures in aquatic ecotoxicological testing: framework and case studies based on dispersion and dissolution. Nanotoxicology 11:546–557. https://doi.org/10.1080/17435390.2017.1317863

    Article  CAS  Google Scholar 

  31. Godwin H, Nameth C, Avery D et al (2015) Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9:3409–3417. https://doi.org/10.1021/acsnano.5b00941

    Article  CAS  Google Scholar 

  32. Saleh N, Afrooz A, Bisesi J et al (2014) Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems. Nanomaterials 4:372–407. https://doi.org/10.3390/nano4020372

    Article  CAS  Google Scholar 

  33. Petersen EJ, Diamond SA, Kennedy AJ et al (2015) Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol 49:9532–9547. https://doi.org/10.1021/acs.est.5b00997

    Article  CAS  Google Scholar 

  34. Florczyk SJ, Saha S (2007) Ethical issues in nanotechnology. J Long-Term Eff Med Implants 17:271–280

    Article  Google Scholar 

  35. Ganguly P, Breen A, Pillai SC (2018) Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 4:2237–2275

    Article  CAS  Google Scholar 

  36. Walters C, Pool E, Somerset V (2016) Nanotoxicology: a review. In: Toxicology – new aspects to this scientific conundrum. InTech, Rijeka

    Google Scholar 

  37. Laux P, Tentschert J, Riebeling C et al (2018) Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 92:121–141

    Article  CAS  Google Scholar 

  38. Recordati C, De Maglie M, Bianchessi S et al (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 13:12. https://doi.org/10.1186/s12989-016-0124-x

    Article  CAS  Google Scholar 

  39. Gidwani M, Singh A (2014) Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges. Curr Pharm Biotechnol 14:1201–1212. https://doi.org/10.2174/1389201015666140508122558

    Article  CAS  Google Scholar 

  40. Laux P, Riebeling C, Booth AM et al (2017) Biokinetics of nanomaterials: the role of biopersistence. NanoImpact 6:69–80

    Article  Google Scholar 

  41. Collier ZA, Kennedy AJ, Poda AR et al (2015) Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies. J Nanopart Res 17:1–21. https://doi.org/10.1007/s11051-015-2943-3

    Article  CAS  Google Scholar 

  42. Arts JHE, Hadi M, Irfan MA et al (2015) A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 71:S1–S27. https://doi.org/10.1016/j.yrtph.2015.03.007

    Article  CAS  Google Scholar 

  43. Hansen SF, Jensen KA, Baun A (2014) NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res 16:1–25. https://doi.org/10.1007/s11051-013-2195-z

    Article  CAS  Google Scholar 

  44. Hund-Rinke K, Herrchen M, Schlich K et al (2015) Test strategy for assessing the risks of nanomaterials in the environment considering general regulatory procedures. Environ Sci Eur 27:1–12. https://doi.org/10.1186/s12302-015-0053-6

    Article  CAS  Google Scholar 

  45. Jahnel J (2015) Conceptual questions and challenges associated with the traditional risk assessment paradigm for nanomaterials. NanoEthics 9:261–276. https://doi.org/10.1007/s11569-015-0235-0

    Article  Google Scholar 

  46. Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59. https://doi.org/10.1002/ETC.726@10.1002/(ISSN)1551-3793.INRECOGNITIONOFADISTINGUISHEDCAREERSTEVEKLAINE

    Article  CAS  Google Scholar 

  47. Han X, Corson N, Wade-Mercer P et al (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9. https://doi.org/10.1016/j.tox.2012.03.006

    Article  CAS  Google Scholar 

  48. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  49. Singh S, Rathee N, Gupta H et al (2017) Contactless and hassle free real time heart rate measurement with facial video. J Card Crit Care TSS 1:24–29. https://doi.org/10.1055/s-0037-1604202

    Article  Google Scholar 

  50. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    Article  CAS  Google Scholar 

  51. Singh AV, Laux P, Luch A et al (2019) Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol Mech Methods 29:378–387. https://doi.org/10.1080/15376516.2019.1566425

    Article  CAS  Google Scholar 

  52. Andrione M, Timberlake BF, Vallortigara G et al (2017) Morphofunctional experience-dependent plasticity in the honeybee brain. Learn Mem 24:622–629. https://doi.org/10.1101/lm.046243.117

    Article  CAS  Google Scholar 

  53. Harper S, Wohlleben W, Doa M et al (2015) Measuring nanomaterial release from carbon nanotube composites: review of the state of the science. J Phys Conf Ser 617:012026. https://doi.org/10.1088/1742-6596/617/1/012026

    Article  CAS  Google Scholar 

  54. Wang S, Lu W, Tovmachenko O et al (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463:145–149. https://doi.org/10.1016/j.cplett.2008.08.039

    Article  CAS  Google Scholar 

  55. Landvik NE, Skaug V, Mohr B et al (2018) Criteria for grouping of manufactured nanomaterials to facilitate hazard and risk assessment: a systematic review of expert opinions. Regul Toxicol Pharmacol 95:270–279

    Article  CAS  Google Scholar 

  56. Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ (2017) Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 98:1–17

    Article  CAS  Google Scholar 

  57. Miller RJ, Muller EB, Cole B et al (2017) Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton. Aquat Toxicol 183:85–93. https://doi.org/10.1016/j.aquatox.2016.12.009

    Article  CAS  Google Scholar 

  58. Moreno-Garrido I, Pérez S, Blasco J (2015) Toxicity of silver and gold nanoparticles on marine microalgae. Mar Environ Res 111:60–73. https://doi.org/10.1016/j.marenvres.2015.05.008

    Article  CAS  Google Scholar 

  59. Lu J, Tian S, Lv X et al (2018) TiO2 nanoparticles in the marine environment: impact on the toxicity of phenanthrene and Cd2+ to marine zooplankton Artemia salina. Sci Total Environ 615:375–380. https://doi.org/10.1016/j.scitotenv.2017.09.292

    Article  CAS  Google Scholar 

  60. do Amaral DF, Guerra V, Motta AGC et al (2019) Ecotoxicity of nanomaterials in amphibians: a critical review. Sci Total Environ 686:332–344. https://doi.org/10.1016/j.scitotenv.2019.05.487

    Article  CAS  Google Scholar 

  61. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  Google Scholar 

  62. Singh AV, Raymond M, Pace F et al (2015) Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci Rep 5:7847. https://doi.org/10.1038/srep07847

    Article  CAS  Google Scholar 

  63. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  64. Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amneesh Singla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singla, A., Sankar, K.M., Singh, Y. (2021). Ecotoxicology: Methods and Risks. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_92

Download citation

Publish with us

Policies and ethics