Skip to main content

TiO2/Fly Ash Nanocomposite for Photodegradation of Organic Pollutant

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 161 Accesses

Abstract

Photocatalytic materials are currently intensively studied because of their high potential in UV and solar-light water purification. The photocatalysis is based on charge carrier generation and mobility of electron/hole pairs. Usually, a large amount of photoexcited charge it is lost by recombination, there are necessary coupled materials, highly active photocatalysts, and a very good electron acceptor semiconductor – that means composite material. There are several catalysts reported in the literature. Among the metal oxides such as TiO2, ZnO, SnO2, and CeO2, CuO is extensively used in heterogeneous photocatalysis for degradation of organic compounds degradation. Its activity can be enhanced by several methods such as doping, surface modification, and shape tailoring. These triggered a large volume of publications, and studies demonstrated that enhancing the dominance of reactive facets can enhance oxidation/reduction processes or even tune the adsorption of pollutants. On the other hand, photocatalyst nanoparticles immobilized on fly ashes improved their ability to destroy the organic compounds in the contaminated water. The literature indicated that nanoparticles can be uniformly dispersed on the surface of fly ash particles. The composite catalysts can be fabricated by different methods (hydrothermal, physical blending, sol–gel method, etc.). The effects of synthesis methods, precursors, promoters, calcination temperature, photocatalyst dosage, initial concentration, and irradiation time on the photodegradation of pollutants will be presented; these information will shed light to select the best photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciobanu G, Barna S, Harja M (2016) Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent. Arch Environ Prot 42(2):3–11

    Article  Google Scholar 

  2. Ciobanu G, Harja M, Rusu L, Mocanu AM, Luca C (2014) Acid Black 172 dye adsorption from aqueous solution by hydroxyapatite as low-cost adsorbent. Korean J Chem Eng 31(6):1021–1027

    Article  CAS  Google Scholar 

  3. Harja M, Ciobanu G, Favier L, Bulgariu L, Rusu L (2016) Adsorption of crystal violet dye onto modified ash. The Bull Pol Inst Iasi 62:27–67

    Google Scholar 

  4. Favier L, Rusu L, Simion AI, Hlihor RM, Pacala ML, Augustyniak A (2019) Efficient degradation of clofibric acid by heterogeneous photocatalytic oxidation process. Environ Eng Manag J 18(8):1683–1692

    Article  CAS  Google Scholar 

  5. Ciobanu G, Ilisei S, Harja M, Luca C (2013) Removal of Reactive Blue 204 dye from aqueous solutions by adsorption onto nanohydroxyapatite. Sci Adv Mater 5(8):1090–1096

    Article  CAS  Google Scholar 

  6. Favier L, Laslau A, Simion AI, Sescu AM, Harja M, Rusu L (2019) New evidence of accelerated elimination of an emergent water pollutant by TiO2 assisted photo-oxidation. In: 16th international conference on environmental science and technology Rhodes, Greece, pp 12–15

    Google Scholar 

  7. Sescu AM, Harja M, Lutic D, Favier L, Ciobanu G (2019) Photocatalytic activity of dopped TiO2 over organic compounds degradation. Ann Acad Rom Sci Ser Phys Chem 4(2):69–75

    Google Scholar 

  8. Kotova OB, Harja M, Kotov LN, Ponaryadov AV (2018) Titanium minerals as prototypes of functional materials with pronounced electromagnetic properties. Vestnik IG Komi SC UB RAS 4:34–39

    Article  Google Scholar 

  9. Shchemelinina TN, Kotova OB, Harja M, Anchugova EM, Pelovski Y, Cretescu I (2017) New trends in the mechanisms of increasing productivity of mineral-based materials. Vestnik IG Komi SC UB RAS 6:40–42

    Article  Google Scholar 

  10. Reza KM, Kurny AS, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7(4):1569–1578

    Article  CAS  Google Scholar 

  11. Harja M, Cimpeanu SM, Dirja M, Bucur D (2016) Synthesis of Zeolite from Fly Ash and their use as soil amendment. In: Zeolites –useful minerals. Claudia Belviso, IntechOpen, London, UK, pp 43–66

    Google Scholar 

  12. Rusu L, Harja M, Simion AI, Suteu D, Ciobanu G, Favier L (2014) Removal of Astrazone Blue from aqueous solutions onto brown peat. Equilibrium and kinetics studies. Korean J Chem Eng 31(6):1008–1015

    Article  CAS  Google Scholar 

  13. Harja M, Barbuta M, Rusu L, Munteanu C, Buema G, Doniga E (2011) Simultaneous removal of astrazone blue and lead onto low cost adsorbents based on power plant ash. Environ Eng Manag J 10(3):341–347

    Article  CAS  Google Scholar 

  14. Harja M, Kotova O, Sun S, Ponaryadov A, Shchemelinina T (2019) Efficiency evaluation for titanium dioxide-based advanced materials in water treatment. In: International congress applied mineral. Springer Proceedings in Earth and Environmental Sciences, Springer Nature Switzerland AG, pp 255–258

    Google Scholar 

  15. Favier L, Harja M, Simion AI, Rusu L, Kadmi Y, Pacala ML, Bouzaza A (2016) Advanced oxidation process for the removal of chlorinated phenols in aqueous suspensions. J Environ Prot Ecol 17(3):1132–1141

    CAS  Google Scholar 

  16. Lutic D, Coromelci CG, Juzsakova T, Cretescu I (2017) New mesoporous titanium oxide-based photoactive materials for the removal of dyes from wastewaters. Environ Eng Manag J 16(4):801–807

    Article  CAS  Google Scholar 

  17. Harja M, Sescu AM, Favier L, Lutic D, Ciobanu G (2018) Photodegradation of Rhodamine 6G in presence of Ag/TiO2 photocatalyst. In: Proceedings book of international symposium the environment and the industry, section sustainable environmental technologies. Ecoind, Bucuresti, pp 99–104

    Google Scholar 

  18. Kadmi Y, Favier L, Harja M, Simion AI, Rusu L, Wolbert D (2015) A new strategy for pentachlorophenol monitoring in water samples using ultra-high performance liquid chromatography-mass spectrometry tandem. Environ Eng Manag J 14(3):567–574

    Article  Google Scholar 

  19. Vrinceanu N, Hlihor RM, Simion AI, Rusu L, Fekete-Kertész I, Barka N, Favier L (2019) New evidence of the enhanced elimination of a persistent drug used as a lipid absorption inhibitor by advanced oxidation with UV-A and nanosized catalysts. Catalysts 9(9):761–771

    Article  CAS  Google Scholar 

  20. de Castro CG, Duduman CN, Harja M, Lutic D, Juzsakova T, Cretescu I (2019) New TiO2-Ag nanoparticles used for organic compounds degradation. Environ Eng Manag J 18(8):1755–1763

    Article  CAS  Google Scholar 

  21. Shimizu E, Promentilla MA, Yu DE (2020) Utilization of coal fly ash and rice hull ash as geopolymer matrix-cum-metal dopant applied to visible-light-active nanotitania photocatalyst system for degradation of dye in wastewater. Catalysts 10(2):240–251

    Article  CAS  Google Scholar 

  22. Verma R, Gangwar J, Srivastava AK (2017) Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv 7(70):44199–44224

    Article  CAS  Google Scholar 

  23. Apostolescu GA, Cernatescu C, Cobzaru C, Tataru RE, Apostolescu N (2015) Studies on the photocatalytic degradation of organic dyes using CeO2-ZnO mixed oxides. Environ Eng Manag J 14(2):415–420

    Article  Google Scholar 

  24. Sescu AM, Favier L, Ciobanu G, Cimpeanu SM, Teodorescu RI, Harja M (2018) Studies regarding photocatalytic degradation of two different organic compounds. Sci Pap Ser E Land Reclam Earth Observ Surv Environ Eng 7:74–77

    Google Scholar 

  25. Nuțescu Duduman C, Gómez de Salazar y Caso de Los Cobos JM, Harja M, Barrena Pérez MI, Gómez de Castro C, Lutic D, Kotova O, Cretescu I (2018) Preparation and characterisation of nanocomposite material based on TiO2-Ag for environmental applications. Environ Eng Manag J 17:925–936

    Article  Google Scholar 

  26. Perović K, Kovačić M, Kušić H, Lavrenčič Štangar U, Fresno F, Dionysiou DD, Bozic AL (2020) Recent achievements in development of TiO2-based composite photocatalytic materials for solar driven water purification and water splitting. Materials 13(6):1338

    Article  CAS  Google Scholar 

  27. Szołdra P, Pichór W, Cholewa-Kowalska K, Adamczyk A, Szudek W (2019) Synthesis and characterization of TiO2 thin film on fly ash cenospheres. Compos Theory Pract 19:71–75

    Google Scholar 

  28. Visa M, Duta A (2013) TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chem Eng J 223:860–868

    Article  CAS  Google Scholar 

  29. Kotova OB, Ignatiev GV, Shushkov DA, Harja M, Broekmans MA (2020) Preparation and properties of ceramic materials from coal fly ash. In: Minerals: structure, properties, methods of investigation. Springer Proceedings in Earth and Environmental Sciences, Springer Nature Switzerland AG, pp 101–107

    Google Scholar 

  30. Duta A, Visa M (2015) Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J Photochem Photobiol A Chem 306:21–30

    Article  CAS  Google Scholar 

  31. Harja M, Ciobanu G (2018) Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Sci Total Environ 628:36–43

    Article  CAS  Google Scholar 

  32. Harja M, Duduman Nutescu C, Apostolescu GA, Gómez De Salazar JM, Gómez De Castro C, Sescu AM, Ciobanu G (2019) Enhanced of TiO2-Ag photocatalysis performance for removal of methylene blue in the presence of acetone. In: 16th international conference ennvironmental science technologies. Global Network of Environmental Science and Technology (Global NEST), Athens, Grecee

    Google Scholar 

  33. Cretescu I, Harja M, Teodosiu C, Isopescu DN, Chok MF, Sluser BM, Salleh MAM (2018) Synthesis and characterisation of a binder cement replacement based on alkali activation of fly ash waste. Process Saf Environ Prot 119:23–35

    Article  CAS  Google Scholar 

  34. Bravo PI, Shimizu E, Malenab RA, Tigue AA, Dela Cerna KM, Janairo JI, Promentilla MA, Yu DE (2019) Nanocrystalline titania coated metakaolin and rice hull ash based geopolymer spheres for photocatalytic degradation of dyes in wastewater. Orient J Chem 35:167–172

    Article  CAS  Google Scholar 

  35. Harja M, Barbuta M, Gavrilescu M (2009) Utilization of coal fly ash from power plants II. Geopolymer obtaining. Environ Eng Manag J 8(3):513–520

    Article  Google Scholar 

  36. https://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_pollutants_3.pdf

  37. Rusu L, Suceveanu M, Şuteu D, Favier L, Harja M (2017) Assessment of groundwater and surface water contamination by landfill leachate: a case study in Neamt county, Romania. Environ Eng Manag J 16(3):633–641

    Article  CAS  Google Scholar 

  38. Patel M, Kumar R, Kishor K, Misna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119(6):3510–3673

    Article  CAS  Google Scholar 

  39. Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal-care products in plants. Trends Plant Sci 22:194–203

    Article  CAS  Google Scholar 

  40. Taylor D, Senac T (2014) Human pharmaceutical products in the environment−the “Problem” in perspective. Chemosphere 115:95–99

    Article  CAS  Google Scholar 

  41. Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  42. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Article  CAS  Google Scholar 

  43. Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH (2015) Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Technol 12:603–616

    Article  CAS  Google Scholar 

  44. Agueniou F, Chebli D, Reffas A, Bouguettoucha A, Benguerba Y, Favier L, Amrane A (2018) Impact of TiO2-cation exchange resin composite on the removal of ethyl violet. Arab J Sci Eng 43(5):2451–2463

    Article  CAS  Google Scholar 

  45. Duduman CN, De Castro CG, Ciobanu G, Cimpeanu C, Harja M (2018) Application of sol-gel method for synthesis of Ni(OH)2 and NiO nanoparticles. Sci Pap Ser E Land Reclam Earth Observ Surv Environ Eng VII:78–81

    Google Scholar 

  46. Nuțescu Duduman C, Gómez De Salazar Y Caso De Los Cobos JM, Barrena Pérez MI, Harja M, Palamarciuc I, Gómez De Castro C (2016) Obtained of nanocomposites: Cu, CuO and Cu(OH)2 -CNF by sol-gel method. Int J Mod ManTechnol VIII:13–18

    Google Scholar 

  47. Nutescu Duduman C, Gómez De Salazar Y, Los Cobos José M, Niculaua M, Ciobanu G, Harja M, Gómez De Castro C (2018) Synthesis of ZnO/CuO nanocomposites with CNF and Ag by gel sol. In: Proceedings book of international symposium the environment and the industry, section sustainable environmental technologies. Ecoind, Bucuresti, pp 145–152

    Google Scholar 

  48. Cabeza VS (2016) High and efficient production of nanomaterials by microfluidic reactor approaches. In: Advances in microfluidics–new applications in biology, energy, and materials sciences. InTech Rijeka, London, UK, pp 385–410

    Google Scholar 

  49. Petronella F, Truppi A, Dell’Edera M, Agostiano A, Curri ML, Comparelli R (2019) Scalable synthesis of mesoporous TiO2 for environmental photocatalytic applications. Materials 12(11):1853–1874

    Article  CAS  Google Scholar 

  50. Cui Y, Liu L, Li B, Zhou X, Xu N (2010) Fabrication of tunable core−shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. J Phys Chem C 114:2434–2439

    Article  CAS  Google Scholar 

  51. Ye M, Chen Z, Wang W, Shen J, Ma J (2010) Hydrothermal synthesis of TiO2 hollow microspheres for the photocatalytic degradation of 4-chloronitrobenzene. J Hazard Mater 184:612–619

    Article  CAS  Google Scholar 

  52. Sattarfard R, Behnajady MA, Eskandarloo H (2018) Hydrothermal synthesis of mesoporous TiO2 nanotubes and their adsorption affinity toward Basic Violet 2. J Porous Mater 25:359–371

    Article  CAS  Google Scholar 

  53. Pan JH, Wang XZ, Huang Q, Shen C, Koh ZY, Wang Q, Engel A, Bahnemann DW (2014) Large-scale synthesis of urchin-like mesoporous TiO2 hollow spheres by targeted etching and their photoelectrochemical properties. Adv Funct Mater 24:95–104

    Article  CAS  Google Scholar 

  54. Gilja V, Katančić Z, Krehula LK, Mandić V, Hrnjak-Murgić Z (2019) Efficiency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye. Sci Eng Compos Mat 26(1):292–300

    Article  CAS  Google Scholar 

  55. Cai Y, Xu B, Li M, Cao P, Luo J, Rao M, Li G (2020) Preparation and photocatalytic properties of Mo-Doped TiO2@ fly ash cenospheres for degradation of methylene blue. In: Characterization of minerals, metals, and materials. Springer, Cham, pp 183–192

    Google Scholar 

  56. Lum PT, Foo KY, Zakaria NA, Palaniandy P (2020) Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: A review. Mater Chem Phys 241:122405

    Article  CAS  Google Scholar 

  57. Huo P, Yan Y, Li S, Li H, Huang W (2010) Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity. Desalin 256:196–200

    Article  CAS  Google Scholar 

  58. Wang B, Li Q, Wang W, Li Y, Zhai J (2011) Preparation and characterization of Fe3+ doped TiO2 on fly ash cenospheres for photocatalytic application. Appl Surf Sci 257:3473–3479

    Article  CAS  Google Scholar 

  59. Okte AN, Karamanis D, Tuncel D (2014) Dual functionality of TiO2-fly ash nanocomposites: water vapor adsorption and photocatalysis. Catal Today 230:205–213

    Article  CAS  Google Scholar 

  60. Chen Y (2020) Photodegradation of pharmaceutical waste by nano-materials as photocatalysts. In: Nano-materials as photocatalysts for degradation of environmental pollutants. Elsevier, Amsterdam, pp 143–152

    Chapter  Google Scholar 

  61. Setthaya N, Chindaprasirt P, Yin S, Pimraksa K (2017) TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol 313:417–426

    Article  CAS  Google Scholar 

  62. Lv J, Sheng T, Su L, Xu G, Wang D, Zheng Z, Wu Y (2013) NS co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity. Appl Surf Sci 284:229–234

    Article  CAS  Google Scholar 

  63. Saud PS, Pant B, Park M, Chae SH, Park SJ, Ei-Newehy M, Al-Deyab SS, Kim HY (2015) Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants. Ceram Int 41:1771–1777

    Article  CAS  Google Scholar 

  64. An N, Ma Y, Liu J, Ma H, Yang J, Zhang Q (2018) Enhanced visible-light photocatalytic oxidation capability of carbon-doped TiO2 via coupling with fly ash. Chin J Catal 39:1890–1900

    Article  CAS  Google Scholar 

  65. Katsika E, Moutsatsou A, Karayannis V, Volioti M, Tsoukleris D (2018) Synthesis and characterization of lignite fly ash ceramic substrates coated with TiO2 slurry, and evaluation in environmental applications. J Australian Ceram Soc 54:711–719

    Article  CAS  Google Scholar 

  66. Saufi H, El Alouani M, Alehyen S, El Achouri M, Aride J (2020) Photocatalytic degradation of methylene blue from aqueous medium onto perlite-based geopolymer. Int J Chem Eng 2020:1–7

    Article  CAS  Google Scholar 

  67. Foura G, Chouchou N, Soualah A, Kouachi K, Guidotti M, Robert D (2017) Fe-doped TiO2 supported on HY zeolite for solar photocatalytic treatment of dye pollutants. Catalysts 7(11):344–360

    Article  CAS  Google Scholar 

  68. Kang X, Liu S, Dai Z, He Y, Song X, Tan Z (2019) Titanium dioxide: from engineering to applications. Catalysts 9(2):191

    Article  CAS  Google Scholar 

  69. Yaqoob AA, Parveen T, Umar K, Ibrahim M, Nasir M (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495–525

    Article  CAS  Google Scholar 

  70. Yang X, Liu Y, Yan C, Peng R, Wang H (2019) Geopolymer-TiO2 nanocomposites for photocatalysis: synthesis by one-step adding treatment versus two-step acidification calcination. Minerals 9(11):658–664

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Harja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Favier, L., Harja, M. (2021). TiO2/Fly Ash Nanocomposite for Photodegradation of Organic Pollutant. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_11

Download citation

Publish with us

Policies and ethics