Skip to main content

Learning Low-Level Behaviors and High-Level Strategies in Humanoid Soccer

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

Abstract

This paper investigates the learning of both low-level behaviors for humanoid robot controllers and of high-level coordination strategies for teams of robots engaged in simulated soccer. Regarding controllers, current approaches typically hand-tune behaviors or optimize them without realistic constraints, for example allowing parts of the robot to intersect with others. This level of optimization often leads to low-performance behaviors. Regarding strategies, most are hand-tuned with arbitrary parameters (like agents moving to pre-defined positions on the field such that eventually they can score a goal) and the thorough analysis of learned strategies is often disregarded. This paper demonstrates how it is possible to use a distributed framework to learn both low-level behaviors, like sprinting and getting up, and high-level strategies, like a kick-off scenario, outperforming previous approaches in the FCPortugal3D Simulated Soccer team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdolmaleki, A., Lau, N., Reis, L.P., Neumann, G.: Regularized covariance estimation for weighted maximum likelihood policy search methods. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 154–159. IEEE (2015)

    Google Scholar 

  2. Abdolmaleki, A., Simões, D., Lau, N., Reis, L.P., Neumann, G.: Learning a humanoid kick with controlled distance. In: Robot World Cup, pp. 45–57. Springer, Hedidelberg (2016)

    Chapter  Google Scholar 

  3. Cruz, L., Reis, L.P., Lau, N., Sousa, A.: Optimization approach for the development of humanoid robots’ behaviors. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) Advances in Artificial Intelligence - IBERAMIA 2012, pp. 491–500. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Federation, R.: Robocup simulation 3d league rules. https://ssim.robocup.org/wp-content/uploads/2018/12/Rules_RoboCupSim3D2018.pdf. Accessed 21 Apr 2019

  5. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. CoRR abs/1705.08926 (2017)

    Google Scholar 

  6. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  7. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint arXiv:1604.00772 (2016)

  8. Kasaei, S.M., Simões, D., Lau, N., Pereira, A.: A hybrid zmp-cpg based walk engine for biped robots. In: Iberian Robotics Conference, pp. 743–755. Springer, Heidelberg (2017)

    Google Scholar 

  9. Kupcsik, A., Deisenroth, M., Peters, J., Neumann, G.: Data-efficient contextual policy search for robot movement skills. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2013)

    Google Scholar 

  10. Lau, N., Reis, L.P., Shafii, N., Ferreira, R., Abdolmaleki, A.: FC Portugal 3D simulation team: team description paper. RoboCup 2013 (2013)

    Google Scholar 

  11. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. CoRR abs/1706.02275 (2017)

    Google Scholar 

  12. MacAlpine, P., Stone, P.: Overlapping layered learning. Artif. Intell. 254, 21–43 (2018)

    Article  MathSciNet  Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  14. Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H., Wang, J.: Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. CoRR abs/1703.10069 (2017)

    Google Scholar 

  15. Picado, H., Gestal, M., Lau, N., Reis, L.P., Tomé, A.M.: Automatic generation of biped walk behavior using genetic algorithms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) Bio-Inspired Systems: Computational and Ambient Intelligence, pp. 805–812. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Rückstieß, T., Felder, M., Schmidhuber, J.: State-dependent exploration for policy gradient methods. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 234–249. Springer, Heidelberg (2008)

    Google Scholar 

  17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  18. Simões, D., Lau, N., Reis, L.P.: Multi-agent neural reinforcement-learning system with communication. In: World Conference on Information Systems and Technologies, pp. 3–12. Springer, Heidelberg (2019)

    Google Scholar 

  19. Stone, P., Veloso, M.: Layered learning and flexible teamwork in RoboCup simulation agents. In: Robot Soccer World Cup, pp. 495–508. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Stulp, F., Sigaud, O.: Path integral policy improvement with covariance matrix adaptation. arXiv preprint arXiv:1206.4621 (2012)

  21. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with backpropagation. CoRR abs/1605.07736 (2016)

    Google Scholar 

  22. Sun, Y., Wierstra, D., Schaul, T., Schmidhuber, J.: Efficient natural evolution strategies. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 539–546. ACM (2009)

    Google Scholar 

  23. Theodorou, E., Buchli, J., Schaal, S.: A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11(Nov), 3137–3181 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by FCT (Portuguese Foundation for Science and Technology) under grant PD/BD/113963/2015. This research was partially supported by LIACC (UID/CEC/00027/2019) and IEETA (UID/CEC/00127/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Simões .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simões, D., Amaro, P., Silva, T., Lau, N., Reis, L.P. (2020). Learning Low-Level Behaviors and High-Level Strategies in Humanoid Soccer. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_44

Download citation

Publish with us

Policies and ethics