Skip to main content

microRNAs in Plant Embryogenesis

  • Chapter
  • First Online:
Plant microRNAs

Abstract

In higher plants, the development of a mature embryo from the zygote follows a synchronized sequence of cell division, growth and differentiation events ultimately regulated by a highly coordinated gene expression. Several genome-wide expression studies during embryogenesis in Arabidopsis have been reported, including high-resolution single-cell directed, but current knowledge is mainly based on the coding transcriptome. Despite the available state-of-the-art technologies for transcriptome sequencing, there is still a gap in our understanding of the complex regulatory networks involving small non-coding RNAs. While a few microRNAs of specific conserved families have been functionally characterized, the role played by a major part of the microRNA population during the plant life cycle, including embryo development, in both model and non-model plants are yet to be discovered. In this chapter, we review the current knowledge of the gene expression regulation of plant embryogenesis by microRNAs, and discuss future perspectives for advancing our knowledge on plant embryo development in the light of the latest discoveries in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armenta-Medina A, Lepe-soltero D, Xiang D, Datla R (2017) Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Dev Biol 431:145–151

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64(1):137–159

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  CAS  PubMed  Google Scholar 

  • Cao M-J, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Hell R, Zhu JK, Xiang CB (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J (2014) Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol 166:252–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ario M, Griffiths-Jones S, Kim M (2017) Small RNAs: big impact on plant development. Trends Plant Sci 22(12):1056–1068

    Article  PubMed  CAS  Google Scholar 

  • Dastidar MG, Scarpa A, Magele I, Ruiz-Duarte P, Born P, Bald L, Jouannet V, Maizel A (2019) ARF5/MONOPTEROS directly regulates miR390 expression in Arabidopsis thaliana primary root meristem. Plant Direct https://doi.org/10.1101/463943

  • de Vega-Bartol J, Simões M, Lorenz WW, Rodrigues AS, Alba R, Dean JFD, Miguel C (2013) Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinuspinaster. BMC Plant Biol 13:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci 105(29):9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17(9):818–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266(5185):605–614

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves S, Cairney J, Maroco J, Oliveira MM, Miguel C (2005) Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta 222:556–563

    Article  PubMed  CAS  Google Scholar 

  • Grigg SP, Galinha C, Kornet N, Canales C, Scheres B, Tsiantis M (2009) Report repression of apical homeobox genes is required for embryonic root development in Arabidopsis. Curr Biol 19:1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Hakman I, von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway Spruce). J Plant Physiol 121(2):149–158

    Article  CAS  Google Scholar 

  • Hardtke CS, Ckurshumova W, Vidaurre DP, Singh S, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131(5):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • He X, Shenkute AG, Wang W, Xu S (2018) Characterization of conserved and novel miRNAs in Lilium lancifolium Thunb. by high-throughput sequencing. Sci Rep 8:2880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang H, Long J, Zheng L, Li Y, Hu Y, Yu G et al (2016) Identification and characterization of microRNAs in maize endosperm response to exogenous sucrose using small RNA sequencing. Genomics 108:216–222

    Article  CAS  PubMed  Google Scholar 

  • Hunter C, Willmann MR, Wu G, Yoshikawa M, Gutiérrez-Nava M, Poethig RS (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981

    Article  CAS  PubMed  Google Scholar 

  • Jagtap S, Shivaprasad PV (2014) Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants. BMC Genom 15:1049

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Hargreaves C, Trontin J (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology, vol 1359. Humana Press, New York

    Chapter  Google Scholar 

  • Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132

    Article  CAS  PubMed  Google Scholar 

  • Kou SJ, Wu XM, Liu Z, Liu YL, Xu Q, Guo WW (2012) Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues. Plant Cell Rep 31:2151–2163

    Article  CAS  PubMed  Google Scholar 

  • Ledwoń A, Gaj MD (2009) LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Rep 28:1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Li WF, Zhang SG, Han SY, Wu T, Zhang JH, Qi LW (2012) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larixkaempferi (Lamb.) Carr Plant Cell Tissue Organ Cult 113(1):131–136

    Google Scholar 

  • Li D, Wang L, Liu X, Cui D, Chen T, Zhang H, Jiang C, Xu C, Li P, Li S, Zhao L, Chen H (2013) Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds. PLoS ONE 8:1–14

    Google Scholar 

  • Li ZX, Li SG, Zhang L, Han S, Li WF, Xu H, Yang W, Liu Y, Fan Y, Qi LW (2016) Over-expression of miR166a inhibits cotyledon formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis. Plant Cell Tissue Organ Cult 127:461–473

    Article  CAS  Google Scholar 

  • Lin Y, Lai Z (2013) Comparative Analysis Reveals Dynamic Changes in miRNAs and Their Targets and Expression during Somatic Embryogenesis in Longan (Dimocarpus longan Lour.). PLoS ONE 8 (4):e60337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Lai Z, Tian Q, Lin L, Lai R, Yang M, Zhang D, Chen Y, Zhang Z (2015) Endogenous target mimics down-regulate miR160 mediation of ARF10, -16, and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour. Front Plant Sci 6:956

    PubMed  PubMed Central  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen H, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H (2009) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58 (1):27-40

    Article  PubMed  CAS  Google Scholar 

  • Long JM, Liu CY, Feng MQ, Liu Y, Wu XM, Guo WW (2018) MiR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J Exp Bot 69:2979–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH (2006) Rice embryogeniccalli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel CM, Rupps A, Raschke J, Rodrigues AS and Trontin JF (2016) Impact of molecular studies on somatic embryogenesis development for implementation in conifer multi-varietal forestry. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. National Institute of Forest Science, pp 373–421

    Google Scholar 

  • Miyashima S, Honda M, Hashimoto K, Tatematsu K, Hashimoto T, Sato-Nara K, Okada K, Nakajima K (2013) A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol 54(3):375–384

    Article  CAS  PubMed  Google Scholar 

  • Möller BK, Hove CA, Xiang D, Williams N, López LG, Yoshida S, Smit M, Datla R, Weijers D (2017) Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. PNAS 114(12):E2533–2539

    Article  CAS  Google Scholar 

  • Möller B, Weijers D (2009) Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 1(5):a001545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24(23):2678–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Plotnikova A, Kellner MJ, Mosiolek M, Schon MA, Nodine MD (2019) MicroRNA dynamics and functions during Arabidopsis embryogenesis. Plant Cell https://doi.org/10.1105/tpc.19.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: Proceedings of the TAPPI R &D division biological sciences symposium, Minneapolis, MN, 3–6 Oct 1994. Technical Association of the Pulp and Paper Industry Press, Atlanta, pp 31–34

    Google Scholar 

  • Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D (2011) A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68:597–606

    Article  CAS  PubMed  Google Scholar 

  • Reichel A, Miller AA (2015) Specificity of plant miRNA target MIMIcs: Cross-targeting of miR1559 and miR319. J Plant Physiol 180:45–48

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Tang G (2012) Identification of sucrose-responsive microRNAs reveals sucroseregulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana. Plant Sci 187:59–68

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AR, Chaves I, Costa BV, Lin Y-C, Lopes S, Milhinhos A, Van de Peer Y, Miguel CM (2019) Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci Rep 9:11327 https://doi.org/10.1038/s41598-019-47789-y

  • Schwartz BW, Yeung EC, Meinke DW (1994) Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120:3235–3245

    CAS  PubMed  Google Scholar 

  • Seefried WF, Willmann MR, Clausen RL, Jenik PD (2014) Global regulation of embryonic patterning in Arabidopsis by MicroRNAs. Plant Physiol 165:670–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN (2018) The role of miRNA in somatic embryogenesis. Genomics 111(5):1026–1033 

    Article  PubMed  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. Encyclopedia of plant anatomy XII, Embryol gymnosperms Encycl plant Anat XII

    Google Scholar 

  • Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. J Exp Bot 65(5):1343–1360

    Article  CAS  PubMed  Google Scholar 

  • Smith ZR, Long JA (2010) Control of Arabidopsis apical–basal embryo polarity by antagonistic transcription factors. Nature 464:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci U S A 107:5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Liu YB, Zhou C, Li XM, Zhang XS (2016) The miRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell Tiss Organ Cult 124:405–417

    Article  CAS  Google Scholar 

  • Szittya G, Moxon S, Santos MD, Jing R, Fevereiro MP, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9(1):593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szyrajew K, Bielewicz D, Dolata J, Wójcik AM (2017) MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Front Plant Sci 8:1–16

    Article  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    CAS  PubMed  Google Scholar 

  • Takanashi H, Sumiyoshi H, Mogi M, Hayashi Y, Ohnishi T, Tsutsumi N (2018) miRNAs control HAM1 functions at the single-cell-layer level and are essential for normal embryogenesis in Arabidopsis. Plant Mol Biol 96:627–640

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Bian S, Tang M, Lu Q, Li S, Liu X, Tian G, Nguyen V, Tsang EWT, Wang A, Rothstein SJ, Chen X, Cui Y (2012) MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis. PLoS Genet 8:20–22

    Article  Google Scholar 

  • ten Hove CA, Lu K-J, Weijers D (2015) Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142:420–430

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Benfey PN (2005) Signals that regulate stem cell activity during plant development. Curr Opin Genet Dev 15:388–394

    Article  CAS  PubMed  Google Scholar 

  • Vogel G (2005) How does a single somatic cell become a whole plant? Science 309:86

    Article  CAS  PubMed  Google Scholar 

  • von Arnold S, Clapham D, Abrahamsson M (2019) Embryology in conifers. In: Cánovas FM (ed) Molecular physiology and biotechnology of trees. Advances in botanical research, vol 89. Elsevier, Amsterdam, pp 157–184

    Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Jian H, Wang T, Wei L, Li J, Li C, Liu L (2016) Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing. Front Plant Sci 7:1570

    Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10(2):265–270

    Article  CAS  PubMed  Google Scholar 

  • Wiggans SC (1954) Growth and organ formation in callus tissues derived from Daucus carota. Am J Botany 41(4):321

    Article  CAS  Google Scholar 

  • Willmann MR, Mehalick AJ, Packer RL, Jenik PD (2011) MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol 155:1871–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wójcik AM, Gaj MD (2016) miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Planta 244:231–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wójcik AM, Nodine MD, Gaj MD (2017) miR160 and miR166/165 contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis. Front Plant Sci 8:1–17

    Article  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Kou SJ, Liu YL, Fang YN, Xu Q, Guo WW (2015) Genomewide analysis of small RNAs in nonembryogenic and embryogenic tissues of citrus: microRNA-and siRNA-mediated transcript cleavage involved in somatic embryogenesis. Plant Biotechnol J 13:383–394

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev IA, Fossdal CG (2017) In silico analysis of small RNAs suggest roles for novel and conserved miRNAs in the formation of epigenetic memory in somatic embryos of Norway spruce. Front Physiol 8:674

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tnag G (2019) The interaction between miR160 and miR165/ 166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 9:2832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao X, Chen J, Zhou J, Yu H, Ge C, Zhang M, Gao X, Dai X, Yang ZN, Zhao Y (2019) An essential role for miRNA167 in maternal control of embryonic and seed development. Plant Physiol 180:453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. ProcNatlAcadSci USA 105:10073–10078

    Article  CAS  Google Scholar 

  • Yu N, Niu QW, Ng KH, Chua NH (2015) The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant J 83:673–685

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL, Tarr PT, Yan A, Kay SA, Meyerowitz EM (2015) Control of plant stem cell function by conserved interacting transcriptional regulators. Nature 517:377–380

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Lenf X, Sun X, Mu Q, Wang B, Li X, Wang C, Fang J (2015) Discovery of conservation and diversification of genes by phylogenetic analysis based on global genomes. Plant Genome 8(2)

    Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5(10):1411–1423

    Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based Biotechnology for Plant Improvement. J Cell Physiol 230(1):1-15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support provided by Fundaçãopara a Ciência e a Tecnologia (FCT), through grants UID/Multi/04046/2013 to BioISI (Biosystems and Integrative Sciences Institute)] and GREEN-it (UID/Multi/04551/2013), and the doctoral fellowships SFRH/BD/79779/2011 (to ASR) and SFRH/BD/128827/2017 (to AA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, A., Rodrigues, A.S., Miguel, C. (2020). microRNAs in Plant Embryogenesis. In: Miguel, C., Dalmay, T., Chaves, I. (eds) Plant microRNAs. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-35772-6_6

Download citation

Publish with us

Policies and ethics