Skip to main content

Prediction of Decline in Activities of Daily Living Through Deep Artificial Neural Networks and Domain Adaptation

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Abstract

In order to improve information available at the clinical level and to better focus resources for preventive interventions, it is paramount to estimate the general exposure to risk of adverse health events, commonly referred as frailty. This study compares the performance of shallow and deep multilayer perceptrons (sMLP and dMLP), and of long short-term memories (LSTM), on the prediction of a subject decline in activities of daily living, with and without a previous autoencoder based domain adaptation from an external dataset. Samples originates from two large epidemiological datasets: the English Longitudinal Study of Ageing (ELSA) and The Irish Longitudinal Study on Ageing, with 107879 and 15710 eligible samples, respectively. Deep networks performed better than shallow ones, while dMLP and LSTM performance were similar. Domain adaptation improved predictive ability in all comparisons. On the bigger ELSA dataset, sMLP attains a Brier score of 0.32 without domain adaptation, and 0.15 with domain adaptation, while dMLP attains 0.20 and 0.11, respectively. Thus, experimental results support the use of deep architectures in the prediction of functional decline, and of domain adaptation when data from another similar domain is available. These results may help improving the state of the art in predictive models for clinical practice and population screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: JMLR Workshop Conference Proceedings, vol. 7, pp. 1–20 (2011). https://doi.org/10.1109/IJCNN.2011.6033302

  2. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. CoRR abs/1206.5533 (2012). http://arxiv.org/abs/1206.5533

  3. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS, vol. 7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_1

    Chapter  Google Scholar 

  4. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing recurrent networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8624–8628. IEEE (2013)

    Google Scholar 

  5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50, http://www.ncbi.nlm.nih.gov/pubmed/23787338

    Article  Google Scholar 

  6. Berrendero, J.R., Cuevas, A., Torrecilla, J.L.: The mRMR variable selection method: a comparative study for functional data. J. Stat. Comput. Simul. 86(5), 891–907 (2016). https://doi.org/10.1080/00949655.2015.1042378

    Article  MathSciNet  Google Scholar 

  7. Bouillon, K., et al.: Measures of frailty in population-based studies: an overview. BMC Geriatr. 13(1), 64 (2013). https://doi.org/10.1186/1471-2318-13-64

    Article  Google Scholar 

  8. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1 (1950). https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2

    Article  Google Scholar 

  9. Buckinx, F., Rolland, Y., Reginster, J.Y., Ricour, C., Petermans, J., Bruyère, O.: Burden of frailty in the elderly population: perspectives for a public health challenge. Arch. Public Health 73(1), 19 (2015). https://doi.org/10.1186/s13690-015-0068-x

    Article  Google Scholar 

  10. Buz, J., Cortés-Rodríguez, M.: Measurement of the severity of disability in community-dwelling adults and older adults: interval-level measures for accurate comparisons in large survey data sets. BMJ Open 6(9), e011842 (2016). https://doi.org/10.1136/bmjopen-2016-011842, https://bmjopen.bmj.com/content/6/9/e011842

    Article  Google Scholar 

  11. Chang, S.F., Lin, P.L.: Frail phenotype and mortality prediction: a systematic review and meta-analysis of prospective cohort studies. Int. J. Nurs. Stud. 52(8), 1362–1374 (2015). https://doi.org/10.1016/j.ijnurstu.2015.04.005

    Article  Google Scholar 

  12. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  13. Csurka, G.: Domain adaptation for visual applications: a comprehensive survey, pp. 1–46. CoRR abs/1702.05374 (2017). http://arxiv.org/abs/1702.05374

  14. Daniels, R., Van Rossum, E., Beurskens, A., Van Den Heuvel, W., De Witte, L.: The predictive validity of three self-report screening instruments for identifying frail older people in the community. BMC Public Health 12(1), 69 (2012). https://doi.org/10.1186/1471-2458-12-69

    Article  Google Scholar 

  15. De Lepeleire, J., Iliffe, S., Mann, E., Degryse, J.M.: Frailty: an emerging concept for general practice. Br. J. Gen. Pract. 59(562), 364–369 (2009). https://doi.org/10.3399/bjgp09X420653

    Article  Google Scholar 

  16. Deng, J., Zhang, Z., Eyben, F., Schuller, B.: Autoencoder-based unsupervised domain adaptation for speech emotion recognition. IEEE Signal Process. Lett. 21(9), 1068–1072 (2014). https://doi.org/10.1109/LSP.2014.2324759

    Article  Google Scholar 

  17. Dent, E., Kowal, P., Hoogendijk, E.O.: Frailty measurement in research and clinical practice: a review. Eur. J. Intern. Med. 31, 3–10 (2016). https://doi.org/10.1016/j.ejim.2016.03.007

    Article  Google Scholar 

  18. Donati, L.: Domain adaptation through deep neural networks for health informatics (2017)

    Google Scholar 

  19. Erhan, D., Courville, A., Vincent, P.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010). https://doi.org/10.1145/1756006.1756025, http://portal.acm.org/citation.cfm?id=1756025

  20. Fongo, D.: Previsione del declino funzionale tramite l’utilizzo di reti neurali ricorrenti (2017)

    Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. http://proceedings.mlr.press/v9/glorot10a.html

  22. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning, no. 1, pp. 513–520 (2011). http://www.icml-2011.org/papers/342_icmlpaper.pdf

  23. Gobbens, R.J.J., Van Assen, M.A.L.M.: The prediction of ADL and IADL disability using six physical indicators of frailty: a longitudinal study in the Netherlands. Curr. Gerontol. Geriatr. Res. 2014 (2014). https://doi.org/10.1155/2014/358137

    Article  Google Scholar 

  24. Haley, S.M., et al.: Late life function and disability instrument: I. Development and evaluation of the disability component. J. Gerontol. A Biol. Sci. Med. Sci. 57(4), M209–M216 (2002)

    Article  Google Scholar 

  25. Haley, S.M., et al.: Late life function and disability instrument: II. Development and evaluation of the function component. J. Gerontol. A Biol. Sci. Med. Sci. 57(4), M217–M222 (2002). https://doi.org/10.1093/gerona/57.4.M217

    Article  Google Scholar 

  26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1–32 (1997). https://doi.org/10.1144/GSL.MEM.1999.018.01.02

    Article  Google Scholar 

  27. Banks, J., Batty, G.D., Nazroo, J., Steptoe, A.: The dynamics of ageing: evidence from the English Longitudinal Study of Ageing 2002–15 (Wave 7). The Institute for Fiscal Studies (2016)

    Google Scholar 

  28. Kenny, R.A.: The Irish longitudinal study on ageing (TILDA) 2009–2011 (2014). https://doi.org/10.3886/ICPSR34315.v1

  29. Kenny, R.A., et al.: The design of the Irish longitudinal study on ageing. Lifelong Learn. (2010)

    Google Scholar 

  30. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  31. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  32. Kumar, R., Indrayan, A.: Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 48(4), 277–287 (2011). https://doi.org/10.1007/s13312-011-0055-4

    Article  Google Scholar 

  33. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  34. Lee, L., Heckman, G., Molnar, F.J.: Frailty: identifying elderly patients at high risk of poor outcomes. Can. Fam. physician Mèdecin Fam. Can. 61(3), 227–231 (2015). http://www.cfp.ca/content/61/3/227

    Google Scholar 

  35. Lee, L., Patel, T., Hillier, L.M., Maulkhan, N., Slonim, K., Costa, A.: Identifying frailty in primary care: a systematic review. Geriatr. Gerontol. Int. 17(10), 1358–1377 (2017). https://doi.org/10.1111/ggi.12955

    Article  Google Scholar 

  36. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint, pp. 1–38 (2015). https://doi.org/10.1145/2647868.2654889, http://arxiv.org/abs/1506.00019

  37. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R.: Learning to diagnose with LSTM recurrent neural networks. In: ICLR, pp. 1–18 (2015). http://arxiv.org/abs/1511.03677

  38. Lisboa, P.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15(1), 11–39 (2002). https://doi.org/10.1016/S0893-6080(01)00111-3

    Article  Google Scholar 

  39. Markle-Reid, M., Browne, G.: Conceptualizations of frailty in relation to older adults. J. Adv. Nurs. 44(1), 58–68 (2003). https://doi.org/10.1046/j.1365-2648.2003.02767.x

    Article  Google Scholar 

  40. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. (February) 1–11 (2017). https://doi.org/10.1093/bib/bbx044

    Article  Google Scholar 

  41. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015). https://doi.org/10.1109/MSP.2014.2347059

    Article  Google Scholar 

  42. Prechelt, L.: Early stopping—but when? In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_5

    Chapter  Google Scholar 

  43. Prieto, A., et al.: Neural networks: an overview of early research, current frameworks and new challenges. Neurocomputing 214, 242–268 (2016). https://doi.org/10.1016/j.neucom.2016.06.014

    Article  Google Scholar 

  44. Purushotham, S., Carvalho, W., Nilanon, T., Liu, Y.: Variational adversarial deep domain adaptation for health care time series analysis. In: 29th Conference on Neural Information Processing System (NIPS) (2016). https://wcarvalho.github.io/files/nips_2016/VADA_main.pdf

  45. Puts, M.T., et al.: Interventions to prevent or reduce the level of frailty in community-dwelling older adults: a scoping review of the literature and international policies. Age Ageing 46(3), 383–392 (2017). https://doi.org/10.1093/ageing/afw247

    Article  Google Scholar 

  46. Ravi, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 1 (2016). https://doi.org/10.1109/JBHI.2016.2636665, http://ieeexplore.ieee.org/document/7801947/

    Article  Google Scholar 

  47. Robert, C., Arreto, C.D., Azerad, J., Gaudy, J.F.: Bibliometric overview of the utilization of artificial neural networks in medicine and biology. Scientometrics 59(1), 117–130 (2004). https://doi.org/10.1023/B:SCIE.0000013302.59845.34

    Article  Google Scholar 

  48. Song, X., Mitnitski, A., Cox, J., Rockwood, K.: Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Medinfo 11, 736–740 (2004)

    Google Scholar 

  49. Spector, W.D., Fleishman, J.: Combining activities of daily living with instrumental activities of daily living to measure functional disability. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 53(1), S46–S57 (1998)

    Article  Google Scholar 

  50. Steptoe, A., Breeze, E., Banks, J., Nazroo, J.: Cohort profile: the English longitudinal study of ageing. Int. J. Epidemiol. 42(6), 1640–1648 (2013). https://doi.org/10.1093/ije/dys168

    Article  Google Scholar 

  51. Tak, E., Kuiper, R., Chorus, A., Hopman-Rock, M.: Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: a meta-analysis. Ageing Res. Rev. 12(1), 329–338 (2013). https://doi.org/10.1016/j.arr.2012.10.001

    Article  Google Scholar 

  52. Vermeulen, J., Neyens, J.C., Van Rossum, E., Spreeuwenberg, M.D., De Witte, L.P.: Predicting ADL disability in community-dwelling elderly people using physical frailty indicators: a systematic review. BMC Geriatr. 11, 33 (2011). https://doi.org/10.1186/1471-2318-11-33

    Article  Google Scholar 

  53. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of 25th International Conference on Machine Learning, ICML 2008, pp. 1096–1103 (2008). https://doi.org/10.1145/1390156.1390294, http://portal.acm.org/citation.cfm?doid=1390156.1390294

  54. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 1096–1103. ACM, New York (2008). https://doi.org/10.1145/1390156.1390294

  55. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. arXiv preprint (2018). http://arxiv.org/abs/1802.03601

    Article  Google Scholar 

  56. Weber, M., et al.: Feasibility and effectiveness of intervention programmes integrating functional exercise into daily life of older adults: a systematic review. Gerontology 64, 172–187 (2017). https://doi.org/10.1159/000479965, http://www.ncbi.nlm.nih.gov/pubmed/28910814

    Article  Google Scholar 

  57. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3, 9 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  58. Whelan, B.J., Savva, G.M.: Design and methodology of the Irish longitudinal study on ageing. J. Am. Geriatr. Soc. 61, S265–S268 (2013). https://doi.org/10.1111/jgs.12199

    Article  Google Scholar 

  59. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006). https://doi.org/10.1109/TKDE.2006.17

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The data relative to ELSA were made available through the United Kingdom Data Archive - www.data-archive.ac.uk. ELSA was developed by a team of researchers based at the NatCen Social Research, University College London and the Institute for Fiscal Studies. The data were collected by NatCen Social Research. The funding is provided by the National Institute of Aging in the United States, and a consortium of United Kingdom government departments coordinated by the Office for National Statistics.

TILDA is an interinstitutional initiative led by Trinity College Dublin. TILDA data have been co-funded by the Government of Ireland through the Office of the Minister for Health and Children, by Atlantic Philanthropies, and by Irish Life; have been collected under the Statistics Act, 1993, of the Central Statistics Office. The project has been designed and implemented by the TILDA study team, Department of Health and Children. Copyright and all other intellectual property rights relating to the data are vested in TILDA. Ethical approval for each wave of data collection is granted by the Trinity College Research Ethics Committee. TILDA data is accessible for free from the following sites: Irish Social Science Data Archive at University College Dublin http://www.ucd.ie/issda/data/tilda/; Interuniversity Consortium for Political and Social Research at the University of Michigan (http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/34315).

The original data creators, depositors or copyright holders, the funders of the data collections and the archives of the datasets bear no responsibility for their further analysis or interpretation presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cattelani .

Editor information

Editors and Affiliations

Ethics declarations

All authors declare no competing interests and to be aware of the submission of this manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donati, L., Fongo, D., Cattelani, L., Chesani, F. (2019). Prediction of Decline in Activities of Daily Living Through Deep Artificial Neural Networks and Domain Adaptation. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics