Skip to main content

Neural Network Compensation of Dynamic Errors in a Robot Manipulator Programmed Control System

  • Conference paper
  • First Online:
Cyber-Physical Systems and Control (CPS&C 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 95))

Included in the following conference series:

  • 1203 Accesses

Abstract

The subject of consideration in this paper is a programmed control system of a robot manipulator. Mathematical description of the control system was presented taking into account the nonlinear dynamics of the robot mechanism. Synthesis of multivariable compensators of dynamic errors for a prototype control system was carried out. Computer models of the control system with synthesized compensators were developed using MATLAB package. The results of teaching of neural network compensators are given for a programmed trajectory of the robot gripper. Comparative analysis of dynamic errors in the prototype system and the system with neural network compensators was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharjee, T., Bhattacharjee, A.: A study of neural network based inverse kinematics solution for a planar three joint robot with obstacle avoidance. Assam Univ. J. Sci. Technol.: Phys. Sci. Technol. 5(2), 1–7 (2010)

    Google Scholar 

  2. Chiddarwar, S.S., Babu, N.R.: Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach. Eng. Appl. Artif. Intell. 23, 1083–1092 (2010)

    Article  Google Scholar 

  3. Corke, P.I.: Robotics, Vision and Control. Fundamental Algorithms in MATLAB, 2nd edn. Springer, Heidelberg (2017)

    Book  Google Scholar 

  4. Corke, P.I.: Robotics Toolbox for MATLAB. Release 10 (2017)

    Google Scholar 

  5. Dixon, W.E.; Moses, D.; Walker, L.D.; Dawson, D.M.: A Simulink-based robotic toolkit for simulation and control of the PUMA 560 robot manipulator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, A, pp. 2202–2207 (2001)

    Google Scholar 

  6. Duc, M.N, Trong, T.N.: Neural network structures for identification of nonlinear dynamic robotic manipulator. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 1575–1580 (2014)

    Google Scholar 

  7. Farzam, T., Nafise, F.R.: Robust control of a 3-DOF parallel cable robot using an adaptive neuro-fuzzy inference system. In: Artificial Intelligence and Robotics (IRANOPEN) (2017)

    Google Scholar 

  8. Ignatova, E.I., Lopota, A.V., Rostov, N.V.: Robot Motion Control Systems. Computer-Aided Design. Polytechnic Publishing Center, St. Petersburg (2014)

    Google Scholar 

  9. Ishmuratov, V.N., Rostov, N.V.: Computer training of neural network quasi time-optimal digital regulators. In: Proceedings of International Scientific and Practical Conference, pp. 134–136. Polytechnic Publishing Center, St. Petersburg (2007)

    Google Scholar 

  10. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. Proc. IEEE Trans Ind Electron. 58, 2444–2453 (2011)

    Article  Google Scholar 

  11. Kim, Y.H., Lewis, F.L.: Neural network output feedback control of robot manipulators. Proc. IEEE Trans Robot Autom. 15, 301–309 (1999)

    Article  Google Scholar 

  12. Kumar, N., Panwar, V., Borm, J.H., Chai, J.: Enhancing precision performance of trajectory tracking controller for robot manipulators using RBFNN and adaptive bound. Appl. Math. Comput. 231, 320–328 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Lee, G.W., Cheng, F.T.: Robust control of manipulators using the computed torque plus H∞ compensation method. IEEE Proc. Control Theory Appl. 143(1), 64–72 (1996)

    Article  MathSciNet  Google Scholar 

  14. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators. Macmillan, New York (1993)

    Google Scholar 

  15. Lewis, F.L., Jaganathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems (1999)

    Google Scholar 

  16. Santibañez, V., Camarillo, K., Moreno-Valenzuela, J., Campa, R.: A practical PID regulator with bounded torques for robot manipulator. Int. J. Control Autom. Syst. 8(3), 544–555 (2010)

    Article  Google Scholar 

  17. Seshagiri, S., Khalil, H.K.: Output feedback control of nonlinear systems using RBF neural networks. Proc. IEEE Trans Neural Netw. 11, 69–79 (2000)

    Article  Google Scholar 

  18.  Singh, H.P, Sukavanam, N, Panwar, V.: Neural network based compensator for robustness to the robot manipulators with uncertainties. In: Proceedings of International Conference on Mechanical and Electrical Technology, pp. 444–448 (2010)

    Google Scholar 

  19. Tai, N.T., Ahn, K.K.: A RBF neural network sliding mode controller for SMA actuator. Proc. Int J Control Autom. Syst. 8, 1296–1305 (2010)

    Article  Google Scholar 

  20. Terpukhov, S.Yu., Rostov, N.V.: Neural network interpolation of program trajectories of links of a robot manipulator. In: Proceedings of International Scientific and Practical Conference, pp. 70–72. Polytechnic Publishing Center, St. Petersburg (2010)

    Google Scholar 

  21. Yan, Z., Rostov, N.V.: Error analysis of neural network interpolators of program trajectories of links of a robot manipulator. In: Proceedings of ComCon 2018, pp. 114–119. Polytechnic Publishing Center, St. Petersburg. (2018)

    Google Scholar 

  22. Yurevich, E.I.: Fundamentals of Robotics. BHV, St. Petersburg (2005)

    Google Scholar 

  23. Zenkevich, S.L., Yuschenko, A.S.: Fundamentals of Robot Manipulator Control. MSTU by name N. E. Bauman, Moscow (2005)

    Google Scholar 

  24. Zhang, Y., Zhu, H., Lv, X., Li, K.: Joint angle drift problem of Puma560 robot arm solved by a simplified LVI-based primal-dual neural network. In: Proceedings of IEEE International Conference on Industrial Technology (2008)

    Google Scholar 

  25. Zhang, Y., Wang, J.: Obstacle avoidance for kinematically redundant manipulators using a dual neural network. Proc. IEEE Trans Syst. Man Cybern. Part B Cybern. 34(1), 752–759 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay V. Rostov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhengjie, Y., Rostova, E.N., Rostov, N.V. (2020). Neural Network Compensation of Dynamic Errors in a Robot Manipulator Programmed Control System. In: Arseniev, D., Overmeyer, L., Kälviäinen, H., Katalinić, B. (eds) Cyber-Physical Systems and Control. CPS&C 2019. Lecture Notes in Networks and Systems, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-34983-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34983-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34982-0

  • Online ISBN: 978-3-030-34983-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics