Skip to main content

Recent Advances in Controlled Release Technologies for the Co-delivery of Antimicrobial and Osteoconductive Therapeutics

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Bone defects are a significant cause of morbidity in the fields of orthopedics, maxillofacial surgery, and oral implantology, yet their treatment currently faces many challenges including the defect size and location, underlying disease, and microbial infection. Bacteria may be introduced to healing bone through several routes including colonization during open-wound trauma, introduction during surgery, from blood-borne bacteria, or infection of a medical device such as a bone screw. Unfortunately, current treatment strategies are often inadequate and lead to severe and costly consequences. To tackle the problem of infection during bone healing, novel biomaterials such as scaffolds, cements, surface-modified implants, and particles have been developed that comprise both antimicrobial and osteoconductive properties. The antimicrobial properties of these biomaterials typically stem from the addition of antimicrobial agents like antibiotics and silver nanoparticles to the composite material, while osteoconductive properties are conveyed by biomolecules such as growth factors or hydroxyapatite. By controlling modes of delivery and/or release kinetics, these antibacterial and osteoconductive therapeutic constructs are potentially capable of significantly improving bone healing. Recent findings have shown very promising results in the application of these constructs with dual functions in treating infected bone defects. Here, we summarize the advances within the last decade in particle technologies, implant coatings, tissue engineering, and bone cements with both antimicrobial and osteoconductive activity with an emphasis on fabrication and the performance of constructs in various in vitro and in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag-HA:

Silver-containing hydroxyapatite

AgNP:

Silver nanoparticle

AgNP/GS:

Silver nanoparticle gentamicin

AgNP-BHAC:

Silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays

AgNPPGA:

Poly(l-glutamic acid)-capped silver nanoparticles

ALP:

Alkaline phosphatase

Bbr:

Berberine

BMP:

Bone morphogenetic protein

BMSC:

Bone marrow-derived mesenchymal stem/stromal cells

CAP:

Calcium phosphate

CD:

Zero-dimensional carbon dot

CFU:

Colony forming unit

CL:

Clindamycin phosphate

CMCS:

O-carboxymethyl chitosan

Col I:

Type I collagen/procollagen

CS:

Chitosan

CT:

Computed tomography

Cu:

Copper

E. coli :

Escherichia coli

F:

Fluorine

Fe:

Iron

GR-HA:

Glass-reinforced hydroxyapatite

GS:

Gentamicin sulfate

HA:

Hydroxyapatite

IGF-1:

Insulin-like growth factor 1

LbL:

Layer-by-layer (deposition)

MCPM:

Monocalcium phosphate monohydrate

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

MSC:

Mesenchymal stem cell

nHA:

Nanohydroxyapatite

NPs:

Nanoparticles

NT:

Nanotube

OCN:

Osteocalcin

P. aeruginosa :

Pseudomonas aeruginosa

PBS:

Phosphate buffered saline

PCL:

Polycaprolactone

PDLLA:

Poly(d,l-lactide)

PLGA:

Poly(lactic co-glycolic acid)

PM:

PLGA Microparticles

QRT-PCR:

Quantitative real-time polymerase chain reaction

RUNX2:

Runt-related transcription factor 2

S. albus :

Staphylococcus albus

S. aureus :

Staphylococcus aureus

S. epidermidis :

Staphylococcus epidermidis

SBA-15:

Mesoporous silica nanoparticle

SEM:

Scanning electron microscopy

SNPSA:

Silver nanoparticle/poly(dl-lactic-co-glycolic acid)(PLGA)-coated stainless steel alloy

Sr:

Strontium

SR:

Strontium ranelate

TCP:

Tricalcium phosphate

Ti:

Titanium

TNT:

Titania nanotubes

XRD:

X-ray diffraction

Zn:

Zinc

ZnO:

Zinc oxide

References

  1. Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54. https://doi.org/10.1038/nrrheum.2014.164

    Article  PubMed  Google Scholar 

  2. Castillo RC, Bosse MJ, MacKenzie EJ et al (2005) Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma 19:151–157

    Article  PubMed  Google Scholar 

  3. Santolini E, West R, Giannoudis PV (2015) Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence. Injury 46(Suppl 8):S8–S19. https://doi.org/10.1016/S0020-1383(15)30049-8

    Article  PubMed  Google Scholar 

  4. Amin S, Achenbach SJ, Atkinson EJ et al (2014) Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 29:581–589. https://doi.org/10.1002/jbmr.2072

    Article  PubMed  Google Scholar 

  5. Calcei JG, Rodeo SA (2019) Orthobiologics for bone healing. Clin Sports Med 38:79–95. https://doi.org/10.1016/j.csm.2018.08.005

    Article  PubMed  Google Scholar 

  6. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555. https://doi.org/10.1016/j.injury.2011.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Mulhim FA, Baragbah MA, Sadat-Ali M et al (2014) Prevalence of surgical site infection in orthopedic surgery: a 5-year analysis. Int Surg 99:264–268. https://doi.org/10.9738/INTSURG-D-13-00251.1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sodhi N, Anis HK, Garbarino LJ et al (2019) Have we actually reduced our 30-day short-term surgical site infection rates in primary total hip arthroplasty in the United States? J Arthroplast 34(9):2102–2106. https://doi.org/10.1016/j.arth.2019.04.045

    Article  Google Scholar 

  9. Tsukayama DT, Estrada R, Gustilo RB (1996) Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Joint Surg Am 78:512–523. https://doi.org/10.2106/00004623-199604000-00005

    Article  CAS  PubMed  Google Scholar 

  10. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339. https://doi.org/10.1016/j.biomaterials.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  11. Berbari EF, Hanssen AD, Duffy MC et al (1998) Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 27:1247–1254. https://doi.org/10.1086/514991

    Article  CAS  PubMed  Google Scholar 

  12. Johnson EN, Burns TC, Hayda RA et al (2007) Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 45:409–415. https://doi.org/10.1086/520029

    Article  PubMed  Google Scholar 

  13. Murray CK, Obremskey WT, Hsu JR et al (2011) Prevention of infections associated with combat-related extremity injuries. J Trauma 71:S235–S257. https://doi.org/10.1097/TA.0b013e318227ac5f

    Article  CAS  PubMed  Google Scholar 

  14. Blanchette KA, Prabhakara R, Shirtliff ME, Wenke JC (2017) Inhibition of fracture healing in the presence of contamination by Staphylococcus aureus: effects of growth state and immune response. J Orthop Res 35:1845–1854. https://doi.org/10.1002/jor.23573

    Article  PubMed  Google Scholar 

  15. Gosselin RA, Roberts I, Gillespie WJ (2004) Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst Rev (1):CD003764. https://doi.org/10.1002/14651858.CD003764.pub2

  16. Brown KV, Walker JA, Cortez DS et al (2010) Earlier debridement and antibiotic administration decrease infection. J Surg Orthop Adv 19:18–22

    PubMed  Google Scholar 

  17. Penn-Barwell JG, Murray CK, Wenke JC (2012) Early antibiotics and debridement independently reduce infection in an open fracture model. J Bone Joint Surg Br 94:107–112. https://doi.org/10.1302/0301-620X.94B1.27026

    Article  CAS  PubMed  Google Scholar 

  18. Lack WD, Karunakar MA, Angerame MR et al (2015) Type III open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J Orthop Trauma 29:1–6. https://doi.org/10.1097/BOT.0000000000000262

    Article  PubMed  Google Scholar 

  19. Rand BCC, Penn-Barwell JG, Wenke JC (2015) Combined local and systemic antibiotic delivery improves eradication of wound contamination: an animal experimental model of contaminated fracture. Bone Joint J 97-B:1423–1427. https://doi.org/10.1302/0301-620X.97B10.35651

    Article  CAS  PubMed  Google Scholar 

  20. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  21. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. https://doi.org/10.1128/cmr.15.2.167-193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall-Stoodley L, Stoodley P, Kathju S et al (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145. https://doi.org/10.1111/j.1574-695X.2012.00968.x

    Article  CAS  PubMed  Google Scholar 

  23. Badha V, Moore R, Heffernan J et al (2019) Determination of tobramycin and vancomycin exposure required to eradicate biofilms on muscle and bone tissue in vitro. J Bone Jt Infect 4:1–9. https://doi.org/10.7150/jbji.29711

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hangst K, Eitenmüller J, Weltin R, Peters G (1987) Hydroxylapatite silver phosphate ceramics: production, analysis and biological testing of their antibacterial effectiveness. MRS Online Proc Lib Arch 110:269. https://doi.org/10.1557/PROC-110-269

    Article  CAS  Google Scholar 

  25. Kim TN, Feng QL, Kim JO et al (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134. https://doi.org/10.1023/A:1008811501734

    Article  PubMed  Google Scholar 

  26. Qing Y, Cheng L, Li R et al (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327. https://doi.org/10.2147/IJN.S165125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uskoković V, Desai TA (2014) Nanoparticulate drug delivery platforms for advancing bone infection therapies. Expert Opin Drug Deliv 11:1899–1912. https://doi.org/10.1517/17425247.2014.944860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uskoković V (2015) Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 32:1–59

    Article  PubMed  PubMed Central  Google Scholar 

  29. Uskoković V (2015) When 1+1>2: nanostructured composites for hard tissue engineering applications. Mater Sci Eng C Mater Biol Appl 57:434–451. https://doi.org/10.1016/j.msec.2015.07.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stevanović M, Uskoković V, Filipović M et al (2013) Composite PLGA/AgNpPGA/AscH nanospheres with combined osteoinductive, antioxidative, and antimicrobial activities. ACS Appl Mater Interfaces 5:9034–9042. https://doi.org/10.1021/am402237g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao Z, Li Y, Yang Y et al (2018) Osteoinductivity and antibacterial properties of strontium ranelate-loaded poly(lactic-co-glycolic acid) microspheres with assembled silver and hydroxyapatite nanoparticles. Front Pharmacol 9:368. https://doi.org/10.3389/fphar.2018.00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bostancıoğlu RB, Peksen C, Genc H et al (2015) Analyses of the modulatory effects of antibacterial silver doped calcium phosphate-based ceramic nano-powder on proliferation, survival, and angiogenic capacity of different mammalian cells in vitro. Biomed Mater 10:045024. https://doi.org/10.1088/1748-6041/10/4/045024

    Article  CAS  PubMed  Google Scholar 

  33. Uskoković V, Desai TA (2013) Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. II. Antibacterial and osteoblastic response. J Biomed Mater Res A 101A:1427–1436. https://doi.org/10.1002/jbm.a.34437

    Article  CAS  Google Scholar 

  34. Cai B, Zou Q, Zuo Y et al (2018) Injectable gel constructs with regenerative and anti-infective dual effects based on assembled chitosan microspheres. ACS Appl Mater Interfaces 10:25099–25112. https://doi.org/10.1021/acsami.8b06648

    Article  CAS  PubMed  Google Scholar 

  35. Makarov C, Cohen V, Raz-Pasteur A, Gotman I (2014) In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis. Eur J Pharm Sci 62:49–56. https://doi.org/10.1016/j.ejps.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  36. Coathup MJ, Blunn GW, Flynn N et al (2001) A comparison of bone remodelling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem. J Bone Joint Surg Br 83:118–123

    Article  CAS  PubMed  Google Scholar 

  37. Hayakawa T, Yoshinari M, Kiba H et al (2002) Trabecular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants. Biomaterials 23:1025–1031

    Article  CAS  PubMed  Google Scholar 

  38. Darimont GL, Cloots R, Heinen E et al (2002) In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23:2569–2575

    Article  CAS  PubMed  Google Scholar 

  39. Yoshinari M, Oda Y, Inoue T et al (2002) Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials 23:2879–2885

    Article  CAS  PubMed  Google Scholar 

  40. Cho J-H, Garino JP, Choo S-K et al (2010) Seven-year results of a tapered, titanium, hydroxyapatite-coated cementless femoral stem in primary total hip arthroplasty. Clin Orthop Surg 2:214–220. https://doi.org/10.4055/cios.2010.2.4.214

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vidalain J-P (2011) Twenty-year results of the cementless Corail stem. Int Orthop 35:189–194. https://doi.org/10.1007/s00264-010-1117-2

    Article  PubMed  Google Scholar 

  42. Lazarinis S, Kärrholm J, Hailer NP (2011) Effects of hydroxyapatite coating on survival of an uncemented femoral stem. A Swedish Hip Arthroplasty Register study on 4,772 hips. Acta Orthop 82:399–404. https://doi.org/10.3109/17453674.2011.597699

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen W, Oh S, Ong AP et al (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A 82:899–906. https://doi.org/10.1002/jbm.a.31197

    Article  CAS  PubMed  Google Scholar 

  44. Rameshbabu N, Sampath Kumar TS, Prabhakar TG et al (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res A 80:581–591. https://doi.org/10.1002/jbm.a.30958

    Article  CAS  PubMed  Google Scholar 

  45. Fielding GA, Roy M, Bandyopadhyay A, Bose S (2012) Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 8:3144–3152. https://doi.org/10.1016/j.actbio.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qu J, Lu X, Li D et al (2011) Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res B Appl Biomater 97B:40–48. https://doi.org/10.1002/jbm.b.31784

    Article  CAS  Google Scholar 

  47. Tian B, Chen W, Yu D et al (2016) Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 61:345–359. https://doi.org/10.1016/j.jmbbm.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Song G, Chang X et al (2018) Nanostructured Ag+-substituted fluorhydroxyapatite-TiO2 coatings for enhanced bactericidal effects and osteoinductivity of Ti for biomedical applications. Int J Nanomedicine 13:2665–2684. https://doi.org/10.2147/IJN.S162558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng H, Xiong W, Fang Z et al (2016) Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 31:388–400. https://doi.org/10.1016/j.actbio.2015.11.046

    Article  CAS  PubMed  Google Scholar 

  50. Zhou W, Jia Z, Xiong P et al (2017) Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications. ACS Appl Mater Interfaces 9:25830–25846. https://doi.org/10.1021/acsami.7b06757

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Zheng Z, Zara JN et al (2012) The antimicrobial and osteoinductive properties of silver nanoparticle/poly (dl-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 33:8745–8756. https://doi.org/10.1016/j.biomaterials.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  52. Xie C-M, Lu X, Wang K-F et al (2014) Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces 6:8580–8589. https://doi.org/10.1021/am501428e

    Article  CAS  PubMed  Google Scholar 

  53. Strobel C, Bormann N, Kadow-Romacker A et al (2011) Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2) substances from a one-component polymeric coating on implants. J Control Release 156:37–45. https://doi.org/10.1016/j.jconrel.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  54. Min J, Braatz RD, Hammond PT (2014) Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials 35:2507–2517. https://doi.org/10.1016/j.biomaterials.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  55. Min J, Choi KY, Dreaden EC et al (2016) Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano 10:4441–4450. https://doi.org/10.1021/acsnano.6b00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou W, Li Y, Yan J et al (2018) Construction of self-defensive antibacterial and osteogenic AgNPs/gentamicin coatings with chitosan as nanovalves for controlled release. Sci Rep 8:13432. https://doi.org/10.1038/s41598-018-31843-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang Y, Zhang X, Mao H et al (2015) Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv 5:17076–17086. https://doi.org/10.1039/C4RA12118J

    Article  CAS  Google Scholar 

  58. Zheng Z, Yin W, Zara JN et al (2010) The use of BMP-2 coupled—Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31:9293–9300. https://doi.org/10.1016/j.biomaterials.2010.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nie B, Ao H, Zhou J et al (2016) Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation. Colloids Surf B Biointerfaces 145:728–739. https://doi.org/10.1016/j.colsurfb.2016.05.089

    Article  CAS  PubMed  Google Scholar 

  60. Nie B, Ao H, Long T et al (2017) Immobilizing bacitracin on titanium for prophylaxis of infections and for improving osteoinductivity: an in vivo study. Colloids Surf B Biointerfaces 150:183–191. https://doi.org/10.1016/j.colsurfb.2016.11.034

    Article  CAS  PubMed  Google Scholar 

  61. Moskowitz JS, Blaisse MR, Samuel RE et al (2010) The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials 31:6019–6030. https://doi.org/10.1016/j.biomaterials.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Groeneveld EH, Burger EH (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142:9–21

    Article  CAS  PubMed  Google Scholar 

  63. Jeon O, Song SJ, Yang HS et al (2008) Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun 369:774–780. https://doi.org/10.1016/j.bbrc.2008.02.099

    Article  CAS  PubMed  Google Scholar 

  64. Zara JN, Siu RK, Zhang X et al (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 17:1389–1399. https://doi.org/10.1089/ten.TEA.2010.0555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. James AW, LaChaud G, Shen J et al (2016) A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev 22:284–297. https://doi.org/10.1089/ten.TEB.2015.0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu L, Grunlan JC (2007) Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv Funct Mater 17:2343–2348. https://doi.org/10.1002/adfm.200600785

    Article  CAS  Google Scholar 

  67. Podsiadlo P, Kaushik AK, Arruda EM et al (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83. https://doi.org/10.1126/science.1143176

    Article  CAS  PubMed  Google Scholar 

  68. Wang C, Wang S, Li K et al (2014) Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 9:e99585. https://doi.org/10.1371/journal.pone.0099585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wong SY, Moskowitz JS, Veselinovic J et al (2010) Dual functional polyelectrolyte multilayer coatings for implants: permanent microbicidal base with controlled release of therapeutic agents. J Am Chem Soc 132:17840–17848. https://doi.org/10.1021/ja106288c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneider OD, Mohn D, Fuhrer R et al (2011) Biocompatibility and bone formation of flexible, cotton wool-like PLGA/calcium phosphate nanocomposites in sheep. Open Orthop J 5:63–71. https://doi.org/10.2174/1874325001105010063

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sun C-Y, Che Y-J, Lu S-J (2015) Preparation and application of collagen scaffold-encapsulated silver nanoparticles and bone morphogenetic protein 2 for enhancing the repair of infected bone. Biotechnol Lett 37:467–473. https://doi.org/10.1007/s10529-014-1698-8

    Article  CAS  PubMed  Google Scholar 

  72. Lu Y, Li L, Li M et al (2018) Zero-dimensional carbon dots enhance bone regeneration, osteosarcoma ablation, and clinical bacterial eradication. Bioconjug Chem 29:2982–2993. https://doi.org/10.1021/acs.bioconjchem.8b00400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Topsakal A, Uzun M, Ugar G et al (2018) Development of amoxicillin-loaded electrospun polyurethane/chitosan/β-tricalcium phosphate scaffold for bone tissue regeneration. IEEE Trans Nanobioscience 17:321–328. https://doi.org/10.1109/TNB.2018.2844870

    Article  PubMed  Google Scholar 

  74. Jin S, Li J, Wang J et al (2018) Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration. Int J Nanomedicine 13:4591–4605. https://doi.org/10.2147/IJN.S167793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao D, Huo Q, Feng J et al (1998) Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  76. Zhou P, Xia Y, Wang J et al (2013) Antibacterial properties and bioactivity of HACC- and HACC–Zein-modified mesoporous bioactive glass scaffolds. J Mater Chem B 1:685–692. https://doi.org/10.1039/C2TB00102K

    Article  CAS  PubMed  Google Scholar 

  77. Zhou P, Xia Y, Cheng X et al (2014) Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials 35:10033–10045. https://doi.org/10.1016/j.biomaterials.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  78. Pasquet J, Chevalier Y, Pelletier J et al (2014) The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp 457:263–274. https://doi.org/10.1016/j.colsurfa.2014.05.057

    Article  CAS  Google Scholar 

  79. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  PubMed  Google Scholar 

  80. Joe A, Park S-H, Shim K-D et al (2017) Antibacterial mechanism of ZnO nanoparticles under dark conditions. J Ind Eng Chem 45:430–439. https://doi.org/10.1016/j.jiec.2016.10.013

    Article  CAS  Google Scholar 

  81. Felice B, Sánchez MA, Socci MC et al (2018) Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C Mater Biol Appl 93:724–738. https://doi.org/10.1016/j.msec.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  82. Zhang M, Wang W, Cui Y et al (2018) Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int J Nanomedicine 13:2803–2819. https://doi.org/10.2147/IJN.S156434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng X, Wang R, Wang T et al (2018) Carbon Dots/Prussian Blue Satellite/Core Nanocomposites for optical imaging and photothermal therapy. ACS Appl Mater Interfaces 10:1084–1092. https://doi.org/10.1021/acsami.7b14972

    Article  CAS  PubMed  Google Scholar 

  84. Geng B, Qin H, Zheng F et al (2019) Carbon dot-sensitized MoS2 nanosheet heterojunctions as highly efficient NIR photothermal agents for complete tumor ablation at an ultralow laser exposure. Nanoscale 11:7209–7220. https://doi.org/10.1039/c8nr10445j

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Wang X, Li H et al (2011) Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg 131:991–1001. https://doi.org/10.1007/s00402-011-1269-6

    Article  PubMed  Google Scholar 

  86. Uskoković V, Graziani V, Wu VM et al (2019) Gold is for the mistress, silver for the maid: enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. Mater Sci Eng C 94:798–810. https://doi.org/10.1016/j.msec.2018.10.028

    Article  CAS  Google Scholar 

  87. Morais DS, Rodrigues MA, Lopes MA et al (2013) Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. J Mater Sci Mater Med 24:2145–2155. https://doi.org/10.1007/s10856-013-4971-9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber L. Doiron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nwasike, C. et al. (2020). Recent Advances in Controlled Release Technologies for the Co-delivery of Antimicrobial and Osteoconductive Therapeutics. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_2

Download citation

Publish with us

Policies and ethics