Skip to main content

Microbial Cyclic GMP-AMP Signaling Pathways

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

Cyclic dinucleotides are key second messengers essential for bacteria to adapt and thrive in different environments. The recently identified bacterial cyclic dinucleotide second messenger, 3′,3′-cyclic GMP-AMP (cGAMP), was first discovered in Vibrio cholerae. A cGAMP isomer is also found in eukaryotes, and most of the current research on cGAMP biology is focused on its role in mammalian innate immunity regulation. In contrast, how cGAMP regulates its targets and the physiological roles of cGAMP signaling in bacteria are not well understood. Here, we summarize our current knowledge of microbial cGAMP signaling pathways. We review how this unique second messenger was discovered in the current pandemic strains of V. cholerae and how the first bacterial cGAMP protein target was identified. We discuss the potential roles of cGAMP signaling in membrane metabolism, gene regulation, pathogenesis, and evolution of V. cholerae as well as in other bacteria. We also compare the similarities and differences in microbial and eukaryotic cGAMP signaling pathways. Finally, we discuss the outlook of microbial cGAMP signaling research in the context of basic microbiology as well as in studying host–pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sondermann H, Shikuma NJ, Yildiz FH (2012) You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol 15(2):140–146. https://doi.org/10.1016/j.mib.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11(8):513–524. https://doi.org/10.1038/nrmicro3069

    Article  CAS  PubMed  Google Scholar 

  3. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284. https://doi.org/10.1038/nrmicro.2016.190

    Article  CAS  PubMed  Google Scholar 

  4. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. https://doi.org/10.1128/MMBR.00043-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281

    Article  CAS  PubMed  Google Scholar 

  6. Witte G, Hartung S, Buttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30(2):167–178. https://doi.org/10.1016/j.molcel.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  7. Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149(2):358–370. https://doi.org/10.1016/j.cell.2012.01.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DiRita VJ, Parsot C, Jander G, Mekalanos JJ (1991) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 88(12):5403–5407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu D, Liu B, Feng L, Ding P, Guo X, Wang M, Cao B, Reeves PR, Wang L (2016) Origins of the current seventh cholera pandemic. Proc Natl Acad Sci U S A 113(48):E7730–E7739. https://doi.org/10.1073/pnas.1608732113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99(3):1556–1561. https://doi.org/10.1073/pnas.042667999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao J, Tao J, Liang W, Zhao M, Du X, Cui S, Duan H, Kan B, Su X, Jiang Z (2015) Identification and characterization of phosphodiesterases that specifically degrade 3′3'-cyclic GMP-AMP. Cell Res 25(5):539–550. https://doi.org/10.1038/cr.2015.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME, Kieninger AK, Khataokar A, O'Hara BJ, Behrmann LV, Neiditch MB, Benning C, Waters CM, Ng WL (2018) Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci U S A 115(26):E6048–E6055. https://doi.org/10.1073/pnas.1801233115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato K, Ishii R, Hirano S, Ishitani R, Nureki O (2015) Structural basis for the catalytic mechanism of DncV, bacterial homolog of cyclic GMP-AMP synthase. Structure 23(5):843–850. https://doi.org/10.1016/j.str.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  14. Kranzusch PJ, Lee ASY, Wilson SC, Solovykh MS, Vance RE, Berger JM, Doudna JA (2014) Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 158(5):1011–1021. https://doi.org/10.1016/j.cell.2014.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. https://doi.org/10.1126/science.1232458

    Article  CAS  PubMed  Google Scholar 

  16. Zhu D, Wang L, Shang G, Liu X, Zhu J, Lu D, Wang L, Kan B, Zhang JR, Xiang Y (2014) Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. Mol Cell 55(6):931–937. https://doi.org/10.1016/j.molcel.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  17. Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A (2006) Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol 60(2):417–426. https://doi.org/10.1111/j.1365-2958.2006.05096.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417(6889):642–645. https://doi.org/10.1038/nature00778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW (2016) ToxR antagonizes H-NS regulation of horizontally acquired genes to drive host colonization. PLoS Pathog 12(4):e1005570. https://doi.org/10.1371/journal.ppat.1005570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187(5):1792–1798. https://doi.org/10.1128/JB.187.5.1792-1798.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735. https://doi.org/10.1038/nrmicro2203

    Article  CAS  PubMed  Google Scholar 

  22. Hallberg ZF, Wang XC, Wright TA, Nan B, Ad O, Yeo J, Hammond MC (2016) Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3', 3'-cGAMP). Proc Natl Acad Sci U S A 113(7):1790–1795. https://doi.org/10.1073/pnas.1515287113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nelson JW, Breaker RR (2017) The lost language of the RNA World. Sci Signal 10(483). https://doi.org/10.1126/scisignal.aam8812

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413. https://doi.org/10.1126/science.1159519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kellenberger CA, Wilson SC, Hickey SF, Gonzalez TL, Su Y, Hallberg ZF, Brewer TF, Iavarone AT, Carlson HK, Hsieh YF, Hammond MC (2015) GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc Natl Acad Sci U S A 112(17):5383–5388. https://doi.org/10.1073/pnas.1419328112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135(13):4906–4909. https://doi.org/10.1021/ja311960g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nelson JW, Sudarsan N, Phillips GE, Stav S, Lunse CE, McCown PJ, Breaker RR (2015) Control of bacterial exoelectrogenesis by c-AMP-GMP. Proc Natl Acad Sci U S A 112(17):5389–5394. https://doi.org/10.1073/pnas.1419264112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li F, Cimdins A, Rohde M, Jansch L, Kaever V, Nimtz M, Romling U (2019) DncV synthesizes cyclic GMP-AMP and regulates biofilm formation and motility in Escherichia coli ECOR31. mBio 10(2):e02492–e02418

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Burroughs AM, Zhang D, Schaffer DE, Iyer LM, Aravind L (2015) Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 43(22):10633–10654. https://doi.org/10.1093/nar/gkv1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, Kranzusch PJ (2019) Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 566(7743), 259–263. doi:https://doi.org/10.1038/s41586-019-0953-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Margolis SR, Wilson SC, Vance RE (2017) Evolutionary origins of cGAS-STING signaling. Trends Immunol 38(10):733–743. https://doi.org/10.1016/j.it.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  32. Bose D (2017) cGAS/STING pathway in cancer: Jekyll and Hyde story of cancer immune response. Int J Mol Sci 18(11). https://doi.org/10.3390/ijms18112456

    Article  PubMed Central  Google Scholar 

  33. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142–1149. https://doi.org/10.1038/ni.3558

    Article  CAS  PubMed  Google Scholar 

  34. Tan X, Sun L, Chen J, Chen ZJ (2018) Detection of microbial infections through innate immune sensing of nucleic acids. Annu Rev Microbiol 72:447–478. https://doi.org/10.1146/annurev-micro-102215-095605

    Article  CAS  PubMed  Google Scholar 

  35. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906. https://doi.org/10.1126/science.1240933

    Article  CAS  PubMed  Google Scholar 

  36. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520(7548):553–557. https://doi.org/10.1038/nature14156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235. https://doi.org/10.1016/j.molcel.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  38. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328(5986):1703–1705. https://doi.org/10.1126/science.1189801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2012) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518. https://doi.org/10.1038/nature10429

    Article  CAS  Google Scholar 

  40. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ (2013) Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154(4):748–762. https://doi.org/10.1016/j.cell.2013.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McFarland AP, Luo S, Ahmed-Qadri F, Zuck M, Thayer EF, Goo YA, Hybiske K, Tong L, Woodward JJ (2017) Sensing of bacterial cyclic dinucleotides by the oxidoreductase RECON promotes NF-kappaB activation and shapes a proinflammatory antibacterial state. Immunity 46(3):433–445. https://doi.org/10.1016/j.immuni.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE (2015) Ancient origin of cGAS-STING reveals mechanism of universal 2',3' cGAMP signaling. Mol Cell 59(6):891–903. https://doi.org/10.1016/j.molcel.2015.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McFarland AP, Burke TP, Carletti AA, Glover RC, Tabakh H, Welch MD, Woodward JJ (2018) RECON-dependent inflammation in hepatocytes enhances Listeria monocytogenes cell-to-cell spread. MBio 9(3). https://doi.org/10.1128/mBio.00526-18

  44. Ryjenkov DA, Simm R, Romling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314. https://doi.org/10.1074/jbc.C600179200

    Article  CAS  PubMed  Google Scholar 

  45. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6. https://doi.org/10.1093/bioinformatics/bti739

    Article  CAS  PubMed  Google Scholar 

  46. Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, Banakar V, Cegelski L, Wong GC, Yildiz FH (2015) C-di-GMP regulates motile to sessile transition by modulating MshA Pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog 11(10):e1005068. https://doi.org/10.1371/journal.ppat.1005068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Almblad H, Harrison JJ, Rybtke M, Groizeleau J, Givskov M, Parsek MR, Tolker-Nielsen T (2015) The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP. J Bacteriol 197(13):2190–2200. https://doi.org/10.1128/JB.00193-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen ZH, Singh R, Cole C, Lawal HM, Schilde C, Febrer M, Barton GJ, Schaap P (2017) Adenylate cyclase A acting on PKA mediates induction of stalk formation by cyclic diguanylate at the Dictyostelium organizer. Proc Natl Acad Sci U S A 114(3):516–521. https://doi.org/10.1073/pnas.1608393114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. da Costa Vasconcelos FN, Maciel NK, Favaro DC, de Oliveira LC, Barbosa AS, Salinas RK, de Souza RF, Farah CS, Guzzo CR (2017) Structural and enzymatic characterization of a cAMP-dependent diguanylate cyclase from pathogenic Leptospira species. J Mol Biol 429(15):2337–2352. https://doi.org/10.1016/j.jmb.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  50. Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA, Wolfgang MC, Wong GC, O’Toole GA (2015) A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. MBio 6(1). https://doi.org/10.1128/mBio.02456-14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai-Leung Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramliden, M.S., Severin, G.B., O’Hara, B.J., Waters, C.M., Ng, WL. (2020). Microbial Cyclic GMP-AMP Signaling Pathways. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_35

Download citation

Publish with us

Policies and ethics