Skip to main content

Best Practice Guidelines for Sperm DNA Fragmentation Testing

  • Chapter
  • First Online:
Male Infertility

Abstract

The field of male infertility has witnessed many advancements in the past few decades that have refined our understanding of the sperm contribution to conception. The extent of sperm DNA fragmentation is currently believed to play a key role on fertilization and embryogenesis making it an important test of sperm function. This belief has triggered many scientists to explore SDF testing in clinical practice. Many tests can assess DNA damage directly through dyes and probes or indirectly though measuring the denaturation of DNA. Regardless of the method used, SDF testing is gaining popularity and is extensively investigated to evaluate its value in the management of male infertility. Recent publication of clinical practice guidelines on the utility of SDF testing has provided a strong evidence-based approach to the utilization of this test by fertility specialists. This chapter aims at exploring the evidence highlighting the significance of SDF testing in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Datta J, Palmer MJ, Tanton C, Gibson LJ, Jones KG, et al. Prevalence of infertility and help seeking among 15 000 women and men. Hum Reprod. 2016;31:2108–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci. 2015;8:191–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, et al. Critical appraisal of World Health Organization's new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79:16–22.

    Article  PubMed  Google Scholar 

  4. Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol. 2014;40:443–53.

    Article  PubMed  Google Scholar 

  5. Agarwal A, Cho CL, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28:164–71.

    Article  PubMed  Google Scholar 

  6. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5:935–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Majzoub A, Agarwal A, Esteves SC. Sperm DNA fragmentation for the evaluation of male infertility: clinical algorithms. Transl Androl Urol. 2017;6:S405–S8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl. 2004;6:139–48.

    CAS  PubMed  Google Scholar 

  9. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.

    CAS  PubMed  Google Scholar 

  10. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal A, Cho CL, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6:S720–S33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet. 2011;28:1073–85.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33:291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chenlo PH, Curi SM, Pugliese MN, Ariagno JI, Sardi-Segovia M, et al. Fragmentation of sperm DNA using the TUNEL method. Actas Urol Esp. 2014;38:608–12.

    Article  CAS  PubMed  Google Scholar 

  16. Simon L, Carrell DT. Sperm DNA damage measured by comet assay. Methods Mol Biol. 2013;927:137–46.

    Article  CAS  PubMed  Google Scholar 

  17. Simon L, Lutton D, McManus J, Lewis SE. Sperm DNA damage measured by the alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95:652–7.

    Article  PubMed  Google Scholar 

  18. Absalan F, Ghannadi A, Kazerooni M, Parifar R, Jamalzadeh F, et al. Value of sperm chromatin dispersion test in couples with unexplained recurrent abortion. J Assist Reprod Genet. 2012;29:11–4.

    Article  PubMed  Google Scholar 

  19. Gosalvez J, Lopez-Fernandez C, Fernandez JL. Sperm chromatin dispersion test: technical aspects and clinical applications. New York: Springer Sciences; 2011.

    Google Scholar 

  20. Vandekerckhove FW, De Croo I, Gerris J, Vanden Abbeel E, De Sutter P. Sperm chromatin dispersion test before sperm preparation is predictive of clinical pregnancy in cases of unexplained infertility treated with intrauterine insemination and induction with clomiphene citrate. Front Med (Lausanne). 2016;3:63.

    Google Scholar 

  21. Evenson D. Sperm chromatin structure assay (SCSA): detailed protocol. New York: Springer Sciences; 2011.

    Google Scholar 

  22. Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13:69–75.

    Article  CAS  PubMed  Google Scholar 

  23. Evenson D. Sperm chromatin structure assay (SCSA): 30 years’ experience with the SCSA. In: Agarwal A, Zini A, editors. Sperm DNA and male infertility and ART. New York: Springer; 2011. p. 125–49.

    Google Scholar 

  24. Erenpreiss J, Bungum M, Spano M, Elzanaty S, Orbidans J, et al. Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod. 2006;21:2061–4.

    Article  CAS  PubMed  Google Scholar 

  25. McEvoy A, Roberts P, Yap K, Matson P. Development of a simplified method of human semen storage for the testing of sperm DNA fragmentation using the Halosperm G2 test kit. Fertil Steril. 2014;102:981–8.

    Article  CAS  PubMed  Google Scholar 

  26. LeSaint C, Vingataramin L, Alix S, Phillips S, Zini A, et al. Correlation between two sperm DNA fragmentation tests (TUNEL and SCSA) and evaluation of TUNEL assay inter-lab variabiality. Fertil Steril. 2016;106:e297.

    Article  Google Scholar 

  27. Feijo CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101:58–63. e3.

    Article  CAS  PubMed  Google Scholar 

  28. Majzoub A, Agarwal A, Cho CL, Esteves SC. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol. 2017;6:S710–S9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Agarwal A, Esteves SC. Varicocele and male infertility: current concepts and future perspectives. Asian J Androl. 2016;18:161–2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ozturk MI, Koca O, Keles MO, Haklar G, Baykan O, et al. The impact of unilateral experimental rat varicocele model on testicular histopathology, Leydig cell counts, and intratesticular testosterone levels of both testes. Urol J. 2013;10:973–80.

    PubMed  Google Scholar 

  31. Naughton CK, Nangia AK, Agarwal A. Pathophysiology of varicoceles in male infertility. Hum Reprod Update. 2001;7:473–81.

    Article  CAS  PubMed  Google Scholar 

  32. Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril. 2011;96:1283–7.

    Article  CAS  PubMed  Google Scholar 

  33. Dieamant F, Petersen CG, Mauri AL, Conmar V, Mattila M, et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod. 2017;21:295–301.

    PubMed  PubMed Central  Google Scholar 

  34. Roque M, Esteves SC. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol. 2018;50:583–603.

    Article  CAS  PubMed  Google Scholar 

  35. Baazeem A, Belzile E, Ciampi A, Dohle G, Jarvi K, et al. Varicocele and male factor infertility treatment: a new meta-analysis and review of the role of varicocele repair. Eur Urol. 2011;60:796–808.

    Article  PubMed  Google Scholar 

  36. Smit M, Romijn JC, Wildhagen MF, Veldhoven JL, Weber RF, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2013;189:S146–50.

    Article  PubMed  Google Scholar 

  37. Ni K, Steger K, Yang H, Wang H, Hu K, et al. Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol. 2014;192:170–6.

    Article  CAS  PubMed  Google Scholar 

  38. Sadek A, Almohamdy AS, Zaki A, Aref M, Ibrahim SM, et al. Sperm chromatin condensation in infertile men with varicocele before and after surgical repair. Fertil Steril. 2011;95:1705–8.

    Article  PubMed  Google Scholar 

  39. Isaksson R, Tiitinen A. Present concept of unexplained infertility. Gynecol Endocrinol. 2004;18:278–90.

    Article  CAS  PubMed  Google Scholar 

  40. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Article  CAS  PubMed  Google Scholar 

  41. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79(Suppl 3):1597–605.

    Article  PubMed  Google Scholar 

  42. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.

    Article  PubMed  Google Scholar 

  43. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar K, Deka D, Singh A, Mitra DK, Vanitha BR, et al. Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet. 2012;29:861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khadem N, Poorhoseyni A, Jalali M, Akbary A, Heydari ST. Sperm DNA fragmentation in couples with unexplained recurrent spontaneous abortions. Andrologia. 2014;46:126–30.

    Article  CAS  PubMed  Google Scholar 

  46. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.

    Article  PubMed  Google Scholar 

  47. Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102:998–1005.e8.

    Article  CAS  PubMed  Google Scholar 

  48. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30:120–7.

    Article  CAS  PubMed  Google Scholar 

  49. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30:219–29.

    Article  CAS  PubMed  Google Scholar 

  50. Dumoulin JC, Land JA, Van Montfoort AP, Nelissen EC, Coonen E, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25:605–12.

    Article  PubMed  Google Scholar 

  51. Jin J, Pan C, Fei Q, Ni W, Yang X, et al. Effect of sperm DNA fragmentation on the clinical outcomes for in vitro fertilization and intracytoplasmic sperm injection in women with different ovarian reserves. Fertil Steril. 2015;103:910–6.

    Article  CAS  PubMed  Google Scholar 

  52. Yang F, Li L, Chen JP, Liu XQ, Zhong CL, et al. Couple’s infertility in relation to male smoking in a Chinese rural area. Asian J Androl. 2017;19(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  53. Oliveira H, Spano M, Santos C, Pereira ML. Adverse effects of cadmium exposure on mouse sperm. Reprod Toxicol. 2009;28:550–5.

    Article  CAS  PubMed  Google Scholar 

  54. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nature Rev Urology. 2010;7:153–61.

    Article  Google Scholar 

  55. Wijesekara GU, Fernando DM, Wijerathna S, Bandara N. Environmental and occupational exposures as a cause of male infertility. Ceylon Med J. 2015;60:52–6.

    Article  CAS  PubMed  Google Scholar 

  56. Sharma RK, Pasqualotto AE, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22:575–83.

    CAS  PubMed  Google Scholar 

  57. Keck C, Gerber-Schafer C, Clad A, Wilhelm C, Breckwoldt M. Seminal tract infections: impact on male fertility and treatment options. Hum Reprod Update. 1998;4:891–903.

    Article  CAS  PubMed  Google Scholar 

  58. Peng H, Chen Q, Tan Y. Frequent ejaculation associated free radical and lactic acid accumulation cause noninfectious inflammation and muscle dysfunction: a potential mechanism for symptoms in chronic prostatitis/chronic pelvic pain syndrome. Med Hypotheses. 2009;73:372–3.

    Article  CAS  PubMed  Google Scholar 

  59. Agarwal A, Gupta S, Du Plessis S, Sharma R, Esteves SC, et al. Abstinence time and its impact on basic and advanced semen parameters. Urology. 2016;94:102–10.

    Article  PubMed  Google Scholar 

  60. Majzoub A, Agarwal A, Esteves SC. Antioxidants for elevated sperm DNA fragmentation: a mini review. Transl Androl Urol. 2017;6:S649–S53.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Majzoub A, Agarwal A. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia. Indian J Urol. 2017;33:207–14.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16:113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014:CD007411.

    Google Scholar 

  64. Practice Committee of the American Society for Reproductive M, Society for Male R, Urology. Report on varicocele and infertility: a committee opinion. Fertil Steril. 2014;102:1556–60.

    Article  Google Scholar 

  65. Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25:307–14.

    Article  CAS  PubMed  Google Scholar 

  66. Esteves SC, Sanchez-Martin F, Sanchez-Martin P, Schneider DT, Gosalvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104:1398–405.

    Article  PubMed  Google Scholar 

  67. Mehta A, Bolyakov A, Schlegel PN, Paduch DA. Higher pregnancy rates using testicular sperm in men with severe oligospermia. Fertil Steril. 2015;104:1382–7.

    Article  PubMed  Google Scholar 

  68. Arafa M, AlMalki A, AlBadr M, Burjaq H, Majzoub A, et al. ICSI outcome in patients with high DNA fragmentation: testicular versus ejaculated spermatozoa. Andrologia. 2018;50

    Google Scholar 

  69. Esteves SC, Roque M, Garrido N. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis. Asian J Androl. 2018;20:1–8.

    Article  CAS  PubMed  Google Scholar 

  70. McDowell S, Kroon B, Ford E, Hook Y, Glujovsky D, et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst Rev. 2014:CD010461.

    Google Scholar 

  71. Enciso M, Iglesias M, Galan I, Sarasa J, Gosalvez A, et al. The ability of sperm selection techniques to remove single- or double-strand DNA damage. Asian J Androl. 2011;13:764–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xue X, Wang WS, Shi JZ, Zhang SL, Zhao WQ, et al. Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J Assist Reprod Genet. 2014;31:1161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, et al. "physiologic ICSI": hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.

    Article  PubMed  Google Scholar 

  74. Esteves SC, Agarwal A, Majzoub A. Comparison of strategies to reduce sperm DNA fragmentation in couples undergoing ICSI. Transl Androl Urol. 2017;6:S570–S3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hammoud I, Boitrelle F, Ferfouri F, Vialard F, Bergere M, et al. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia. 2013;45:163–70.

    Article  CAS  PubMed  Google Scholar 

  76. Lee TH, Liu CH, Shih YT, Tsao HM, Huang CC, et al. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25:839–46.

    Article  CAS  PubMed  Google Scholar 

  77. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, et al. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4:903–10.

    Article  CAS  PubMed  Google Scholar 

  78. Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Article  CAS  PubMed  Google Scholar 

  79. Esbert M, Pacheco A, Vidal F, Florensa M, Riqueros M, et al. Impact of sperm DNA fragmentation on the outcome of IVF with own or donated oocytes. Reprod Biomed Online. 2011;23:704–10.

    Article  CAS  PubMed  Google Scholar 

  80. Frydman N, Prisant N, Hesters L, Frydman R, Tachdjian G, et al. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril. 2008;89:92–7.

    Article  CAS  PubMed  Google Scholar 

  81. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, et al. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.

    Article  CAS  PubMed  Google Scholar 

  82. Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, et al. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod. 2010;25:1594–608.

    Article  CAS  PubMed  Google Scholar 

  83. Anifandis G, Bounartzi T, Messini CI, Dafopoulos K, Markandona R, et al. Sperm DNA fragmentation measured by Halosperm does not impact on embryo quality and ongoing pregnancy rates in IVF/ICSI treatments. Andrologia. 2015;47:295–302.

    Article  CAS  PubMed  Google Scholar 

  84. Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majzoub, A., Agarwal, A., Cho, CL., Esteves, S.C. (2020). Best Practice Guidelines for Sperm DNA Fragmentation Testing. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics